BAWT - Build Automation With Tcl

BAWT - Build Automation With Tcl

N | N I 2 (@ 1 5 16 @3 3 [PP 3
2 INSTALLATION AND USAGE EXAMPLESouttiiitiiiiiiiiiiiiiiiueiiinneineannenennnennreraseseeeesnns 4
2.1 INStAllation ON WINAOWScooeeieeeeeeeeee e 4
2.2 FaESY =V = o) 1o) o 1 1) G 5
2.3 INSLAllAtION ON DAIMWIN ...t e e ettt e e e e e e e e e eaat e e e e e e e eeaneen e aeeeeeas 7
2.4 (UL o)l 2T (od a TS] o TSP 7
3 DIRECTORY AND FILE STRUCTURE.......ottiiiiiiiiiiiiei ettt 10
3.1 DIFECIONY SITUCTUIE.....c e 10
3.1.1 Structure Of the INPUL QIFECIOTTESoveieeieiiii et 10
3.1.2 Structure 0Of the OULPUL QITECTOMIESc.viiiiiiiiicie e 11
3.1.3 DIFECLONY AICCESS ..viiveeureiteeteeitesteeitesteettestesteestesteese e testeeeetesseestesteesbesbeatsesbesteessesteaseeseesteaneestenteentens 11
3.2 Y= (U] I L URRPPPPRPRR 12
3.3 BUIID FlES ... 21
3.3.1 User supplied DUITA fIIEScoviieee e st re e s beerae b 22
3.3.2 User configurable DUITA FIlESooviiiie e e e 23
4 BUILD ST AGES ... oo a e e e e e e e e e e e e 26
4.1 Yz (o [l =] 0] Ko 1 = T o J PSP PP PPUUPPPPPPPPIN 26
4.2 Y= (o (SR ST =] (0] o PP UPPPPPPPPTTR P PPRRPPPPPRPPPN 27
4.3 S = (o [SJ O3 [T 1 o PP PURPPPPPRPRIR 28
4.4 RS =T N T =T 29
4.5 SEAGE CONTIGUIE ...ttt 29
4.6 S = (o (ST OLo] 1] o] | L= PURPPPPPRPPIR 30
4.7 Stage DISHIDULE ... e e e e e e e et e e e e e e aaaaae 31
4.8 SEAGE FINAIIZE ...ttt 32
5 BUILD PROCESS ... ittt et e e e e e e et e et e e et e e et e e et e e st e e et e eaaeeeens 34
5.1 USEI PEISPECLIVEt e e e e e e e ettt a e e e e e e e e e ettt e e e e e e e eesbttaaeaeeaes 34
5.1.1 Use Case: Cosmetic change of Build file CMake.bawtccoeeiieiiiiiiiciccc e 34
5.1.2 Compiler selection 0N WINGOWSc.ciiiiiiiiieercie ettt sre et s reste e e sresreesbe s 37
5.1.3 Online updates Of lIDFAIIEScc.eiuiiieieiiie e 39
5.1.4 Use the generated lHDIaries.........cooi it 39
5.1.5 Change icoNnS Of @XECULADIES..........ooui it nee s 42
5.1.6 Parallel DUIIAS ..ottt sttt st et e e s aeete et esaeereene s 42
5.2 DY (o] o= gl =T €= o= Tod 1 L= S 43
ST R U oo = To (o T= T [o] - oSSR 43
I A Vo [0 - T 1 o] - oSSR SPSRRN 43
5.2.3 AT @ TCI PIrOGIAM.....oiuiiiiiiiiiitiiteste ettt bbbttt b e bbbt n e ens 44
5.2.4 Manually compile @ HDIary ..o 45
5.3 KINOWIN ISSUBS ...ttt e e ettt e ettt e e e e e e et ettt e e e e e e e e e e ett e e e e e e e e e eeeat e s aeeaeeeeseennanaeeeees 46
LT 50 R = 10 1] o o <= o | oo OSSR 46
5.3.2 BawtLogViewer shows INCOrrect DUl tIMEcocviiiiiiiiiiri s 47
TR G T o Tod ¢ To L SRRSO 47
5.314 PACKAGE TH ..o 47
T T = Tod ¢ 1o [(o] | 110 o] o3 1SS USSPSSN 47
54 TIPS QN TTICKS ettt e e e e et e e e e e e e e e e et e s e e e e e eeeaaaeaa s 47
541 TIPS TOF WINGOWS ...ttt s ee st e e ste et et sreeseenteaneeseeateeneesaeereeneens 47
542 TIPS FOF LINUX.uitiiiiiiiieie sttt ettt e st e e st e te e besreeseenbeaneesaestaeneesrearaenrens 48
BAWT User Manual Version 2.3.1, 2023-01-19 Page 1 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

55 Advanced BatCh SCrIPLS.......coooeeeeeeeeeeee 48
5.5.1 BuUild TCI-PUIE diStIIDULIONSvviiviiiieiii ettt ettt st sb e s sba e s s b e e sabe st 48
5.5.2 BUIld TCI-BI AiStFIBULIONS ...eeeiiiieiiiiiitiii sttt e s b e e e s s b e e e s s abae e e snreas 50

(ST @ 1T L 53

6.1 GraphiCal LOG VIBWEeeiiieeeiieeeieeeeeeseeeeeee ettt 53

7 COMMAND LINE OPTIONSttt ettt et e et e et e e et e s st e e et e e st easans 57

7.1 (1= a1 = TN @] o] (o] £ 1< S SURRPPPPRPRN 57

7.2 LISt ACHION OPLIONS. ... 57

7.3 BUIId ACHION OPLIONS ... 57

7.4 Build Configuration OPtiONSc.oiiiuiiiiii e e e e e e e r e e e 58

8 SUPPORTED LIBRARIES ...ttt ettt e e e e e e et e s e e s e e et e e abeeeens 60
9 MSYS / MINGW INFORMATION ...ttt ettt e et e e e et e et e e et e e st e asaeeesteesens 69

9.1)00 18T 1 T0] o 1T 69
LS 00 N |V 1 4 TR 69
LR |V N 4 TR 69
LSRR T |V [0 (1Y 69

9.2 [ES) 7= | F= o o [T 70
LS R B o111 (o Tz (o Y SN 4 TR 70
L B To 11 a1 (oY= (o Y, 1T A T 70
LS T T 41 =11 P 72
0.2.4 CONTIGUIALION.....c.tiitiiieiietieie sttt ettt bbbt h bbb bttt e e e b e e 72
LS T =T ST 72

9.3 FUMher INfOrMALIONSoieeiii e et e e e e e e et e e e e et e e s e e st e asaaaeaes 72
LR TR R V1Y P A 1 1Y 1S 2 TR 72
0.3.2 WHEIE 10 JEL IMISYS Lottt et et e st e et e e be s beeseesbeeaeesbesbaebesteataenrens 73
L0 TR TR B o 011V (o U LS AV S T 73

10 RELEASE HISTORY oottt ettt et e et e e e et e e e e e s et e s et e e st e e et e saaeanens 74
BAWT User Manual Version 2.3.1, 2023-01-19 Page 2 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

1 Introduction

BAWT is a configurable framework written in Tcl for building C/C++ based software libraries from
source code without user interaction. Its main usage is for the Windows operating system, where
heterogeneous build environments and compilers are needed (or wanted) to build these libraries:

configure/make (via MSYS / MinGW)
nmake

CMake

Visual Studio Solutions

e gcc (via MSYS / MIinGW)

e Visual Studio

Due to the portable nature of Tcl the framework can be used on Linux and Darwin as well using the
configure/make/gcc build chain.

The libraries currently supported by BAWT are mainly from the Tcl and OpenSceneGraph domain.
For these two domains the framework supports creating installation executables on Windows based on
InnoSetup and simple shell-based installation programs for Linux and Darwin.

See chapter for a list of currently supported libraries.

The framework itself is just one plain Tcl file Bawt.tcl, which reads a Setup file containing all the libraries
to be built. Each library must have an accompanying Build file, which contains the details on how to
extract, configure, compile and distribute the library. The library itself is stored as one or more zipped
source code files, which may contain different versions of the library. The generated shared or static
libraries, programs and header files are finally copied into ready-to-use directory structures for use by
developers or for software distribution.

Inputs BAWT Framework Outputs
Library source codes » Framework script » Development directory
» Library build scripts —>| » Setup scripts =2 » Distribution directory

The BAWT framework (including Bootstrap and Setup files) as well as the needed MSYS/MIinGW files
(if running on Windows) must be downloaded manually. You do not need to have Tcl installed to execute
the framework. BAWT comes with Tclkits (single-file Tcl interpreter) for Windows, Linux and Darwin.
The library Build and source files can be downloaded automatically on demand.

The BAWT homepage is at https://www.tcl3d.org/bawt.
BAWT is copyrighted by Paul Obermeier and distributed under the 3-clause BSD license.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 3 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

https://www.tcl3d.org/bawt
https://opensource.org/licenses/BSD-3-Clause

BAWT - Build Automation With Tcl

2 Installation and Usage Examples

This chapter explains the installation of the BAWT framework and gives first simple use cases.
BAWT related downloads are available at https://www.tcl3d.org/bawt/download.html.

Inputs BAWT Homepage

Bootstrap-Darwin

Bootstrap-Windows ‘j SR Samansont

Documentation & = Bawt.2 0.0 2i
Ty

InputLibs +

Resources MSYSIMInGW
| Setup
| Tests
¥ ® Bawt.tcl

| Build-Darwin.sh

.| Build-Linux.sh

"% Build-Windows.bat
| telkit-Darwinbd
| telkit-Linux32

| telkit-Linuxb4

Té telkit-win32.exe

® & ® ® B ¥ ® ¥

2.1 Installation on Windows

Prerequisites:
e None for building libraries supporting MSYS / MinGW.
e Otherwise, Visual Studio (Express, Community or Professional).
o Visual Studio Versions 2008, 2010, 2013, 2015, 2017, 2019 and 2022 are currently
supported.
o If Visual Studio is not installed in the standard location, you have to use procedure
SetvVcvarsProg With the absolute path to batch script vevarsall.bat.

Downloads:
e BAWT framework Bawt-2.3.1.zip
o MSYS /MinGW distribution file(s), ex. gcc7.2.0_x86_64-w64-mingw32.7z

Installation:

o Extract BAWT framework Bawt-2.3.1.zip in a directory of choice, ex. C:\Bawt

o Copy MSYS / MinGW distribution file(s) into C:\Bawt\Bawt-2.3.1\Bootstrap-Windows
¢ Open command shell window and go into directory C:\Bawt\Bawt-2.3.1

Usage examples:
e Create basic Tcl packages for 32-bit (using only MSYS / MinGW):

> Build-Windows.bat x86 gcc Setup\Tcl Basic.bawt update

e Create basic Tcl packages for 64-bit (using only MSYS / MinGW):

BAWT User Manual Version 2.3.1, 2023-01-19 Page 4 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

https://www.tcl3d.org/bawt/download.html

BAWT - Build Automation With Tcl

> Build-Windows.bat x64 gcc Setup\Tcl Basic.bawt update

e Create extended Tcl packages including InnoSetup installation executable for 64-bit (using Visual
Studio 2019 to build Tcl packages supporting Visual Studio like Mpexpr and tkdnd):

> Build-Windows.bat x64 vs2019+gcc Setup\Tcl Distribution.bawt update

2.2 Installation on Linux

Prerequisites:
o Required: c/c++ development package, curl, p7zip
e Optional: Dependent on the libraries. See below for distribution specific examples.

Downloads:
° BAWT framework Bawt-2.3.1.zip

Installation:
o Extract BAWT framework Bawt-2.3.1.zip in a directory of choice, ex. /opt/Bawt
e Open shell (Terminal window), go into created directory /opt/Bawt Bawt-2.3.1 and execute:

> chmod u+x Build*.sh

> chmod u+x tclkit*

Usage examples:
o Create basic Tcl packages for 32-bit:

> ./Build-Linux.sh x86 Setup/Tcl Basic.bawt update

o Create extended Tcl packages including simple shell-based installation script for 64-bit:
> ./Build-Linux.sh x64 Setup/Tcl Distribution.bawt update

Distribution specific prerequisites:
See chapter 3.2 Setup Files for a list of available Setup files and the dependencies between Setup files.

If you want to build ex. Tcl_Extended.bawt, you must not only install the prerequisites of this Setup file,
but also the prerequisites of the dependent Setup file Tcl_Basic.bawt.

Debian 11.6 Bullseye (gcc 10.2.1)

o Install default Debian 11.6 desktop distribution (ex. debian-11.6.0-amd64-DVD-1.iso)
e Use synaptic to install further packages:

Setup file Debian package Needed by library

build-essential All C/C++ based libraries.

All curl
o7zip BAWT framework.
libxll-dev Tk
libcairo2-dev tkpath

Tcl_Basic.bawt libglx-dev Canvas
libglul-mesa-dev
libasound2-dev Snack
libxrandr-dev tcl3dBasic

Tcl_Extended.bawt Tibpython3.9-dev telpy

BAWT User Manual Version 2.3.1, 2023-01-19 Page 5 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

python3-numpy

libxcursor-dev tkdnd
libxi-dev
Tel3D.bawt libxinerama-dev gltw
0OSG_Extended.bawt freeglut3-dev Cal3D
.. bison
MiscLibs.bawt CERTI
flex

Ubuntu 22.04 (gcc 11.3.0)

¢ Install default Ubuntu 22.04 desktop distribution (ex. ubuntu-22.04.1-desktop-amd64.iso)

e Use synaptic to install further packages:

Setup file Ubuntu package Needed by library
build-essential All C/C++ based libraries.
All curl
: BAWT framework.
p7zip
libxll-dev Tk
libcairo2-dev tkpath
Tcl_Basic.bawt libglx-dev Canvas
libglul-mesa-dev
libasound2-dev Snack
libxrandr-dev tcl3dBasic
libpython3.10-dev
Tcl_Extended.bawt by tclpy
python3-numpy
libxcursor-dev tkdnd
libxi-dev
Tcl3D.bawt libxinerama-dev gltw
OSG_Extended.bawt freeglut3-dev Cal3D

SUSE 15.4 (gcc 7.5.0)

o Install default SUSE 15.4 desktop distribution (ex. openSUSE-Leap-15.4-CR-DVD-x86_64-Build31.38-

Media.iso)
e Use vast to install further packages:

Setup file SUSE schema Needed by library
General development . .
All C++ development All C/C++ based libraries.
Setup file SUSE package Needed by library
libx1ll-devel Tk
Tcl_Basic.bawt cairo-devel tkpath
alsa-devel Snack
Tcl_Extended.bawt glu-devel tcl3dBasic

libxrandr-devel

BAWT User Manual

Version 2.3.1, 2023-01-19

Page 6 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

python3-devel
tcl
python3-numpy cpY
libxcursor-devel tkdnd
libxi-devel
Tcl3D.bawt libxinerama-devel gliw
OSG Extended.bawt freeglut3—devel Cal3D

2.3 Installation on Darwin

Prerequisites:
e XCode

e curl (should be available by default on Darwin)

Downloads:
e BAWT framework Bawt-2.3.1.zip

Installation:
e Extract BAWT framework Bawt-2.3.1.zip in a directory of choice, ex. /opt/Bawt
e Open shell (Terminal window), go into created directory /opt/Bawt Bawt-2.3.1 and execute:

> chmod u+x Build*.sh

> chmod u+x tclkit*

Usage examples:
Note, that Darwin does not support 32-bit programs.
Replace Build-Darwin.sh With Build-Darwin-armé64.sh when using an ARM based system.

o Create basic Tcl packages for 64-bit:

> ./Build-Darwin.sh Setup/Tcl Basic.bawt update

o Create extended Tcl packages including simple shell-based installation script for 64-bit:

> ./Build-Darwin.sh Setup/Tcl Distribution.bawt update

2.4 Use of Batch Scripts

As the BAWT framework is generic and has lots of command line options (see chapter 7 Command
Line Options), a batch or shell script for each supported platform is included in the distribution for ease
of usage in the most common use cases:

e Build-Windows.bat
e Build-Linux.sh
e Build-Darwin.sh

These batch scripts have been used in the examples of the previous chapters and may serve as starting
point for your own batch scripts suited exactly to your needs.

Batch script Build-Windows.bat

@echo off
setlocal

rem Default values for some often used options.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 7 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

set OUTROOTDIR=../BawtBuild
set TCLKIT=tclkit-win32.exe
set NUMJOBS=%NUMBER_OF_PROCESSORS%

rem First U4 parameters are mandatory.

if "%l == un gOtO ERROR
if "M == un gOtO ERROR
if "%3" == un gOtO ERROR
if "gy" == un gOtO ERROR
set ARCH=%1

set COMPILER=%2
set SETUPFILE=%3
set ACTION=%U
shift

shift

shift

shift

rem If no target is given, use target "all".
if "%1"=="" goto BUILDALL

rem Loop through the rest of the parameter list for targets.

set TARGETS=

:PARAMLOOP

rem There is a trailing space in the next line. It's there for formatting.
set TARGETS=%TARGETS%%1

shift

if not "%1"=="" goto PARAMLOOP

goto BUILD

:BUILDALL

if "%ACTION%"=="clean" goto WARNING

if "%ACTION%"=="complete" goto WARNING
set TARGETS=all
:BUILD

set ACTION=——%ACTION%

set BAWTOPTS=—-rootdir %OUTROOTDIR% "
——architecture %ARCH% "
——compiler %COMPILER% "
——numjobs %NUMJOBS% "
--logviewer

rem Build all libraries as listed in Setup file.
CALL %TCLKIT% Bawt.tcl %BAWTOPTS% %ACTION% %SETUPFILE% %TARGETS%

goto EOF

:WARNING
echo Warning: This may clean or rebuild everything.
echo Use "clean all" or "complete all" to allow this operation.

:ERROR

echo.

echo Usage: %0 Architecture Compiler SetupFile Action [Targetl] [TargetN]
echo Architecture : x86 x64

echo Compiler : gcc vs2008 vs2010 vs2013 vs2015 vs2017 vs2019 vs2022
echo gcc+vs20XX vs20XX+gcc

echo Actions : clean extract configure compile distribute finalize
echo list complete update simulate touch

echo Default target : all
echo Output directory: %OUTROOTDIR%

BAWT User Manual Version 2.3.1, 2023-01-19 Page 8 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

echo.

:EOF

See also chapter 5.5 Advanced Batch Scripts for examples of more complex batch scripts.

BAWT User Manual

Version 2.3.1, 2023-01-19
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

Page 9 of 74

BAWT - Build Automation With Tcl

3 Directory and File Structure

This chapter explains the directory structure of the input and output files as well as the contents and
structure of the Setup and Build files.

3.1 Directory Structure

3.1.1 Structure of the input directories

If BAWT was downloaded and installed according to the instructions in chapter 2 Installation and Usage,
the following directory structure should exist.

F] Bawt
Bootstrap-Darwin
Bootstrap-Linux
Bootstrap-Windows
InputlLiks
Resources
Setup
Teats
_Bawt.tcl

h_ﬂBuild—?arwin.sh

Build-Linux.sh

Build-Windows.bat
telkit-Darwingd

tolkit-Linux32

tolkit-Linuxed

tclkit-win3Z.exe

The Bootstrap directories contain zipped versions of the 7-zip program for Windows and Darwin and
zipped versions of the zip program for Windows and Linux.

In directory Bootstrap-Windows there should be at least one version of the MSYS/MIinGW distributions,
which you must have downloaded manually.

Directory InputLibs contains the zipped source code versions of the libraries and the associated Build
files, see chapter 3.3 Build Files for a detailed description of Build files. Note, that this directory is empty
after a fresh installation of BAWT, because the corresponding files are downloaded on demand at the
first start of a BAWT build by default. See chapter 5 Build Process on how to avoid automatic downloads
and updates.

The Setup files (see chapter 3.2 Setup Files) supplied with BAWT are located in directory Setup.
Directory Tests contains several simple test scripts for checking correct compilation and installation of
Tcl related packages.

For each supported platform there is also a Tclkit executable supplied, which is needed to run the
BAWT framework, if no Tcl interpreter is available on your machine (Bootstrapping). A Tclkit is a single-
file Tcl interpreter executable.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 10 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

3.1.2 Structure of the output directories

F] BawtBuild
F Windows
4 xgd
Debug
Development
Logs
4 Beleass
Build
Distributicn
Install
4 %88

F va2013

The root directory of the output files of a BAWT build (BawtBuild in the above example) can be specified
with command line option --rootdir. In a Build script this directory can be queried with Tcl procedure
GetOutputRootDir

Beneath the root build directory there can be several directories hamed according to the build
environment used: Windows, Linux, Darwin for builds with gcc or vs2008, vs2010, vs2013, vs2015, vs2017,
vs2019 or vs2022, if a Visual Studio version was used for building.

Beneath these environment specific directories two directory names can appear, depending on the build
architecture: x86 for 32-bit or x64 for 64-bit builds.
In these architecture specific directories 3 to 4 subdirectories are contained.

The Logs directory contains the overall build log file _BawtBuild.log as well as the library specific build
log files. See chapter for an in-depth explanation of BAWT logging functionality.

The Development directory contains all the files needed for a developer using the built libraries.
Depending on the specified build types, directories called Release and Debug will be created. These
directories contain the Build and Install subdirectories, where the actual sources are extracted and built
as well as a Distribution subdirectory, which will contain all files needed for a software distribution of the
compiled libraries.

The Distribution and Development directories contain mostly identical content. The Development directory
typically contains additional library include files and import files (*./ib). It is the task of the library specific
Build file to copy the needed files into the Distribution and Development directories.

3.1.3 Directory access

The next figure shows the input and output directory hierarchy together with the procedures which can
be used to get the path to the corresponding directory. The first procedure column (grey boxes) shows
the names used in BAWT versions prior to 1.0, the second column (green boxes) shows the names as
used by BAWT 1.0 and newer.

The last column shows the available command line options to change the location of a specific input or
output directory.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 11 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

4 | Bawt | GetBawtRootDir | | GetInputRootDir |
InputLibs | GetLibInputbirs | | GetInputLibsbirs | | --libdir
Resources | GFetBawtResourceDir | | GetInputResourcelir |
4 | BawtBuild | GetBawrBuildbir | [GetoutpucRootDir | [--rootdir |
Tools | GetToolsDir | | GetiutputToolsDir | | --toolsdir |
F vs2013
4 | x6l | GetRootDir | | Getoutpucarcnpir |
Development | GetDevDir | | GetlutputDevDir |
Logs | GetLogDir | | GetOutputLogDir |
F Release | GetOutputTypeDir |
Build | GetBuildDir | | GetOutputBuildDir |
Distribution | GetDistDir | | GetOutputDistDir | [aistaiz |
Install | GetInstDir | | GetOutput InstDir |

The library search paths, which can be obtained with procedure GetInputLibsDirs are set at BAWT
start-up to the following values:

e file join [GetInputRootDir] "InputLibs"

e file join [pwd] "InputLibs"
This list can be extended by using command line option --libdir.

If command line option --nosubdirs is specified, procedures Getoutputarchpir and
GetOutputRootDir return the same directory path.

See chapter 4 Build Stages for an in-depth tour through the directory structure of BAWT in conjunction
with the different build stages.

3.2 Setup Files

The following figure shows all available Setup files and their dependencies.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 12 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

WinTools. bawt

Tools bawt Tcl Basic bawt Tecl Python bawt

T]

MiscLibs_bawt

BasicLibs_bawt

\

0S5G Basic bawt Tcl Extended.bawt

\

0S5G_Extended bawt Tel3D. bawt Tel_Distribution_bawt

I

053G _Distribution.bawt

For the Tcl ecosystem the following Setup files are currently supported.

Tcl_MinimalDist.bawt

Builds Tcl, Tk and creates an InnoSetup based setup file on Windows or an
installation shell script on Unix.

Tcl_Basic.bawt

Builds Tcl, Tk, Tclkit and Tcl/Tk packages, which do not depend on 3rd party
libraries. On Windows all libraries can be compiled with MSYS/MinGW.

Tcl_Python.bawt

Extracts the binary Python distribution on Windows and builds the tclpy
package.

Tcl_Extended.bawt

Builds all libraries of Tcl_Basic.bawt, Tcl_Python.bawt and Tcl/Tk packages
which depend on 3rd party libraries, like SWIG, CMake, libressl or image
libraries. On Windows all libraries can be compiled with MSYS/MinGW.

Tcl3D.bawt

Builds all libraries of Tcl_Extended.bawt and the extended version of Tcl3D,
which depends on 3rd party libraries like OpenSceneGraph, SDL, FTGL.

Tcl_Distribution.bawt

Builds all libraries of Tcl_Extended.bawt and creates an InnoSetup based

setup file on Windows or an installation shell script on Unix.

For the OpenSceneGraph ecosystem the following Setup files are currently supported.

OSG_Basic.bawt

Builds OpenSceneGraph with basic plugin libraries as needed by TcI3D. On
Windows all libraries can be compiled with MSYS/MinGW.

OSG_Extended.bawt

Builds all libraries of OSG_Basic.bawt and builds OpenSceneGraph with
extended plugin libraries, as well as libraries depending on
OpenSceneGraph like osgEarth.

OSG_Distribution.bawt

Builds all libraries of OSG_Extended.bawt and creates an InnoSetup based
setup file on Windows or an installation shell script on Unix.

Both the OpenSceneGraph ecosystem as well as the extended Tcl versions need special tools for
building or basic libraries they depend upon.

Tools.bawt

Builds tools needed for building of libraries, like CMake or SWIG.

Basiclibs.bawt

Builds basic libraries needed by other libraries like several image libraries,
zlib, freetype, ffmpeg and libressl.

There are two other Setup files not directly related to one of the above-mentioned ecosystems.

BAWT User Manual

Version 2.3.1, 2023-01-19 Page 13 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

WinTools.bawt Convenience tools for Windows supplied as precompiled binaries like Vim or
Doxygen.

MiscLibs.bawt Builds miscellaneous libraries not directly related to Tcl or
OpenSceneGraph like mathematical, geographical or XML libraries.

See the tables at the end of this chapter for the detailed content of the Setup files.

Setup files are standard Tcl script files. They must have one or more calls to the BAWT setup procedure
for each library being built. Optionally one or more calls to the BAWT Include procedure can be
specified to add dependent libraries.

The setup procedure has the following signature:

‘ proc Setup { libName zipFile buildFile args }

The following 3 mandatory parameters must be specified:

e libName: Library name.

e ziprile: Zipped library source file or library source directory.

e puildrile: File containing build script for the library (see next chapter).

The following optional build parameters are currently supported:

Release Build the Release version of the library. This is the default.
Debug Build the Debug version of the library.
Note, that not all libraries may support Debug mode.

NoWindows Do not build the library on Windows.

NoLinux Do not build the library on Linux.

NoDarwin Do not build the library on Darwin.

NoDarwin-arm Do not build the library on ARM based Darwin.
NoDarwin-intel Do not build the library on Intel based Darwin.
WinCompiler=winCompiler Specify the Windows compiler to use. Valid Windows compiler

names are: gcc, vs.
Note, that the Build file must have support for both Visual
Studio and MSYS/MIinGW instructions.

ForceVS (Deprecated) Force using Visual Studio instead of using MSYS/MIinGW.
Note, that the Build file must have support for both Visual
Studio and MSYS/MIinGW instructions.

Version=X.Y.Z Specify or override a version string for the library. Use this
option, if building a library from a directory (ex. your repository
workspace), which does not have a version number included
in the directory name.

MaxParallel=Platform:NumJobs | Specify the number of parallel build jobs for a specific platform.
Some build systems do not work correctly with lots of parallel
builds.

Valid platform names are: Windows, Linux, Darwin. The
platform name may be optionally appended by the compiler
type vs or gcc.

Example: MaxParallel=Windows-gcc:2
NopParallel=Platforms Specify platforms as comma separated list for which parallel
(Deprecated) builds should be disabled. Valid platform names are:
Windows, Linux, Darwin.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 14 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

All other strings Strings not matching any of the above patterns are interpreted
as a user configuration string. User configuration strings are
either appended to the CMake or configure commands of
the library or can be evaluated by the Build script.

See chapter 3.3.2 User configurable build files for a
description of user configuration strings.

The next tables list the contents of the currently available Setup files.

Setup file Tools.bawt

Builds tools needed for building of libraries, like CMake or SWIG.

Setup LibName ZipFile BuildFile BuildOptions
Setup CMake CMake-3.21.4.7z CMake.bawt

Setup pkgconfig pkgconfig-0.29.2.7z pkgconfig.bawt

Setup SWIG SWIG-4.1.1.7z SWIG.bawt

Setup yasm yasm-1.3.0.7z yasm.bawt

Setup file BasicLibs.bawt

Builds basic libraries needed by several other libraries.
Include "Tools.bawt"

All of the following libraries can be compiled on Linux or Darwin,
but it is better to use the system provided libraries.

Setup LibName ZipFile BuildFile BuildOptions
Basic library needed by most other libraries.
Setup ZLib ZLib-1.2.13.7z ZLib.bawt NoLinux NoDarwin

Setup xz xz=5.2.7.7z xz .bawt NoLinux NoDarwin

Basic Image libraries.

Setup giflib giflib-5.2.1.7z giflib.bawt NoLinux

Setup libwebp libwebp-1.2.4.7z libwebp.bawt NoLinux

Setup JPEG JPEG-9.e.7z JPEG.bawt NoLinux NoDarwin

Setup openjpeg openjpeg-2.5.0.7z openjpeg.bawt

Setup PNG PNG-1.6.38.7z PNG.bawt NoLinux MaxParallel=Windows-gcc:1
Setup TIFF TIFF-4.4.0.7z TIFF.bawt NoLinux NoDarwin

Setup ffmpeg ffmpeg-4.4.1.7z ffmpeg.bawt

Setup Freetype Freetype-2.10.4.7z Freetype.bawt NoLinux NoDarwin
Setup libressl 1libressl-2.9.2.7z libressl.bawt

if { [UseVisualStudio "primary"] && [GetVisualStudioVersion] <= 2008 } {
Visual Studio 2008

Setup SDL SDL-2.0.4.7z SDL.bawt
} elseif { [UseVisualStudio "primary"] && [GetVisualStudioVersion] == 2010 } {
Visual Studio 2010
Setup SDL SDL-2.0.8.7z SDL.bawt
} else {
Setup SDL SDL-2.26.1.7z SDL.bawt

Setup file Tcl_MinimalDist.bawt

Builds just Tcl and Tk and creates a distribution setup file.
Setup LibName ZipFile BuildFile BuildOptions

Tcl and Tk.
Setup Tcl Tcl-[GetTclVersion] .7z Tcl.bawt

BAWT User Manual Version 2.3.1, 2023-01-19 Page 15 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

Setup Tk Tk-[GetTkVersion] .7z Tk.bawt
Tcl/Tk distribution as InnoSetup installer.
Setup InnoSetup InnoSetup-6.2.0.7z InnoSetup.bawt

Setup SetupTcl SetupTcl.7z SetupTcl.bawt

Setup file Tcl_Basic.bawt

Builds Tcl, Tk, Starkit and Tcl/Tk packages, which do not depend on 3rd party libraries.
On Windows all libraries can be compiled with MSys/MinGW.

Setup LibName ZipFile BuildFile BuildOptions
Tcl/Tk, stubs and manual.

Setup Tcl Tcl-[GetTclVersion] .7z Tcl.bawt

Setup TclStubs Tcl-[GetTclVersion] .7z TclStubs.bawt
Setup Tk Tk-[GetTkVersion] .7z Tk.bawt

Setup TkStubs Tk-[GetTkVersion] .7z TkStubs.bawt
Setup TclTkManual TclTkManual.7z TclTkManual.bawt
Compiled Tcl packages.

Setup critcl critcl-3.2.7z critcl.bawt
Setup expect expect-5.45.4.7z expect.bawt
Setup DiffUtil DiffUtil-0.4.2.7z DiffUtil.bawt
Setup memchan memchan-2.3.7z memchan.bawt
Setup Mpexpr Mpexpr-1.2.7z Mpexpr.bawt
Setup nacl nacl-1.1.7z nacl.bawt

Setup nsf nsf-2.4.0.7z nsf.bawt

Setup oratcl oratcl-4.6.7z oratcl.bawt
Setup parse args parse _args-0.3.3.7z parse_args.bawt
Setup rl json rl json-0.11.5.7z rl json.bawt
Setup tbcload tbcload-1.7.1.7z tbcload.bawt
Setup tclcompiler tclcompiler-1.7.3.7z tclcompiler.bawt
Setup tclcsv tclesv-2.3.7z tclcsv.bawt
Setup tclparser tclparser-1.8.7z tclparser.bawt
Setup tclvfs tclvis-1.4.2.7z tclvfs.bawt
Setup tclx tclx-8.4.4.7z tclx.bawt

Setup tdom tdom-0.9.3.7z tdom.bawt

Setup trofs trofs-0.4.9.7z trofs.bawt

Setup tserialport tserialport-1.1.7z tserialport.bawt
MaxParallel=Windows-gcc:1

Setup udp udp-1.0.11.7z udp .bawt

Setup vectcl vectcl-0.2.7z vectcl.bawt

Compiled Tk packages.

Setup Canvas3d Canvas3d-1.2.2.7z Canvas3d.bawt
Setup Img Img-[GetImgVersion] .7z Img.bawt

Setup imgtools imgtools-0.3.7z imgtools.bawt
Setup itk itk-4.1.0.7z itk.bawt

Setup iwidgets iwidgets-4.1.1.7z iwidgets.bawt
Setup photoresize photoresize-0.2.7z photoresize.bawt
Setup polmg poImg-2.0.2.7z polImg.bawt

Setup Snack Snack-2.2.11.7z Snack.bawt

Setup Tix Tix-8.4.3.7z Tix.bawt NoDarwin
Setup Tkhtml Tkhtml-3.0.1.7z Tkhtml.bawt
Setup tkpath tkpath-0.3.3.7z tkpath.bawt NoDarwin
Setup tksvg tksvg-0.12.7z tksvg.bawt

Setup Tktable Tktable-2.11.7z Tktable.bawt
Setup treectrl treectrl-2.4.1.7z treectrl.bawt

Compiled Tcl and Tk packages. Windows only.

Setup iocp iocp-1.1.0.7z iocp.bawt
Setup rbc rbc-0.2.7z rbc.bawt

Setup shellicon shellicon-0.1.7z shellicon.bawt
Setup twapi twapi-4.7.2.7z twapi.bawt
Setup winhelp winhelp-1.1.7z winhelp.bawt

Compiled Tcl packages.
Setup Tcladdressbook
Setup Tclapplescript

Darwin only.
Tcladdressbook-1.2.4.7z
Tclapplescript-2.2.7z

Tcladdressbook.bawt
Tclapplescript.bawt

BAWT User Manual

Version 2.3.1, 2023-01-19

Page 16 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

Setup tclAE

Pure Tcl/Tk packages.
Setup apave
Setup awthemes
Setup BWidget
Setup cawt

Setup materialicons
Setup mentry
Setup magtt

Setup ooxml
Setup pdfétcl
Setup pgintcl
Setup puppyicons
Setup ruff

Setup scrollutil
Setup shtmlview
Setup tablelist
Setup tclargp
Setup tclfpdf
Setup tcllib
Setup tclws
Setup tkcon
Setup tklib
Setup ukaz

Setup wcb

Setup windetect
Setup tkwintrack

Tclkits.
Setup Tclkit

Tcl programs wrapped a
Setup gorilla

Setup tclssg

Setup tkchat

Setup tksglite

tclAE-2.0.7.7z

apave-3.4.8.7z
awthemes-10.4.0.7z
BWidget-1.9.16.7z
cawt-2.9.2.7z
materialicons-0.2.7z
mentry-3.16.7z
mgtt-3.1.7z
ooxml-1.6.1.7z
pdfdtcl-0.9.4.7z
pgintcl-3.5.1.7z
puppyicons-0.1.7z
ruff-2.3.0.7z
scrollutil-1.17.7z
shtmlview-1.0.0.7z
tablelist-6.20.7z
tclargp-0.2.7z
tclfpdf-1.5.7z
tcllib-1.21.7z
tclws-3.4.0.7z
tkcon-2.7.10.7z
tklib-0.7.7z
ukaz-2.0a3.7z
wcb-3.8.7z
windetect-1.0.0.7z
tkwintrack-2.0.1.7z

Tclkit.7z

s starpacks.
gorilla-1.6.0.7z
tclssg-2.2.1.7z
tkchat-1.482.7z
tksglite-0.5.13.7z

tclAE.bawt

apave.bawt
awthemes.bawt
BWidget.bawt
cawt.bawt
materialicons.bawt
mentry.bawt
mgtt.bawt
ooxml.bawt
pdfdtcl.bawt
pgintcl.bawt
puppyicons.bawt
ruff.bawt
scrollutil.bawt
shtmlview.bawt
tablelist.bawt
tclargp.bawt
tclfpdf.bawt
tcllib.bawt
tclws.bawt
tkcon.bawt
tklib.bawt
ukaz.bawt
wcb.bawt
windetect.bawt
tkwintrack.bawt

Tclkit.bawt

gorilla.bawt
tclssg.bawt
tkchat.bawt
tksglite.bawt

Setup file Tcl_Python.bawt

Builds binary Python distribution for Windows and tclpy package.
Include "Tcl Basic.bawt"

Setup LibName ZipFile BuildFile BuildOptions

Setup Python Version=3.7.7

Setup tclpy

Python-3.7.7-[GetBits] .7z Python.bawt
tclpy-0.4.7z tclpy.bawt

Setup file Tcl_Extended.bawt

Builds Tcl/Tk packages which depend on 3rd party libraries,
like SWIG, CMake, libressl or image libraries.

Include "Tools.bawt"

Include "BasicLibs.bawt"
Include "Tcl Basic.bawt"
Include "Tcl Python.bawt"

Setup LibName ZipFile BuildFile BuildOptions
Setup mawt mawt-0.4.1.7z mawt .bawt

Setup tcl3dBasic tcl3d-0.9.5.7z tcl3dBasic.bawt

Setup OglInfo tcl3d-0.9.5.7z OglInfo.bawt

Setup tkdnd tkdnd-2.9.3.7z tkdnd.bawt

Setup tkribbon tkribbon-1.1.7z tkribbon.bawt

Setup tcltls tcltls-1.7.22.7z tcltls.bawt

Setup Trf Trf-2.1.4.7z Trf.bawt NoDarwin

BAWT User Manual Version 2.3.1, 2023-01-19

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

Page 17 of 74

BAWT - Build Automation With Tcl

Setup imgjp2 imgjp2-0.1.7z imgjp2.bawt
Setup tzint tzint-1.1.7z tzint.bawt
Setup libgd libgd-2.3.2.7z libgd.bawt
Setup tclgd tclgd-1.4.7z tclgd.bawt
Setup cfitsio cfitsio-4.1.0.7z cfitsio.bawt
Setup fitsTcl fitsTcl-2.5.7z fitsTcl.bawt
Setup pawt pawt-1.1.0.7z pawt.bawt
Setup libffi libffi-3.4.2.7z libffi.bawt
Setup cffi cffi-1.2.0.7z cffi.bawt
Setup Ffidl Ffidl-0.9.0.7z Ffidl.bawt
MuPDF (and therefore dependent libraries tclMuPdf and MuPDFWidget)
are not available with VisualStudio < 2017.
if { ([UseVisualStudio "primary"] && [GetVisualStudioVersion] < 2017) || \
! [IsGccCompilerNewer "4.8.5"] } {

Setup mupdf mupdf-1.18.2.7z mupdf.bawt
} else {

Setup mupdf mupdf-1.21.1.7z mupdf.bawt
}
Setup tclMuPdf tclMuPdf-2.1.1.7z tclMuPdf .bawt
Setup MuPDFWidget MuPDFWidget-2.2.7z MuPDFWidget .bawt
Setup hdc hdc-0.2.0.1.7z hdc.bawt
Setup gdi gdi-0.9.9.15.7z gdi.bawt
Setup printer printer-0.9.6.15.7z printer.bawt
Tcl programs wrapped as starpacks.
Setup BawtLogViewer BawtLogViewer-[GetVersion] .7z BawtLogViewer.bawt
Setup PoOApps polApps-2.11.0.7z PoApps.bawt

Setup file TcI3D.bawt
Builds the extended version of Tcl3D, which depends on
3rd party libraries (OpenSceneGraph, SDL, FTGL) .
Include "Tools.bawt"
Include "BasicLibs.bawt"
Include "Tcl Extended.bawt"
Include "OSG Basic.bawt"
Setup LibName ZipFile BuildFile BuildOptions
Setup glfw glfw-3.3.2.7z glfw.bawt
Setup FTGL FTGL-2.1.3.7z FTGL.bawt NoDarwin
Setup tcl3dFull tcl3d-0.9.5.7z tcl3dFull.bawt
Setup file Tcl_Distribution.bawt

Use this Setup file to create a Tcl/Tk distribution.
Builds Tcl/Tk with basic package libraries.
Include "Tcl Basic.bawt"
Builds Tcl/Tk with extended package libraries including Tcl3D.
Include "Tcl3D.bawt"
Builds Tcl/Tk with extended package libraries.
Include "Tcl Extended.bawt"
Setup LibName ZipFile BuildFile BuildOptions

Tcl/Tk distribution as InnoSetup installer.

Setup InnoSetup
Setup Redistributables
Setup SetupTcl

InnoSetup-6.2.0.7z
Redistributables.7z
SetupTcl.7z

InnoSetup.bawt
Redistributables.bawt
SetupTcl.bawt

BAWT User Manual

Version 2.3.1, 2023-01-19
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

Page 18 of 74

BAWT - Build Automation With Tcl

Setup SetupPython SetupPython.7z SetupPython.bawt

Setup file OSG_Basic.bawt

Builds OpenSceneGraph with basic plugin libraries as needed by Tcl3D.

Include "Tools.bawt"
Include "BasicLibs.bawt"

Setup LibName ZipFile BuildFile
BuildOptions

The following libraries can be compiled on Linux, but for OpenSceneGraph
we use the librarries installed by the Linux distribution.

Setup freeglut freeglut-3.2.2.7z freeglut.bawt NoLinux
NoDarwin
if { [UseVisualStudio "primary"] && [GetVisualStudioVersion] <= 2010 } {

Setup jasper Jjasper-2.0.14.7z jasper.bawt NoLinux
NoDarwin
} else {

Setup jasper Jjasper-2.0.25.7z jasper.bawt NoLinux
NoDarwin

}

OpenSceneGraph 3rd party libraries.
Setup curl curl-7.70.0.7z curl.bawt

OpenSceneGraph

Setup OpenSceneGraph OpenSceneGraph-[GetOsgVersion] .7z OpenSceneGraph.bawt A
Possible deadlock: MaxParallel=Windows-gcc:1
Setup OpenSceneGraphData OpenSceneGraphData-3.4.0.7z OpenSceneGraphData.bawt

Setup file OSG_Extended.bawt

Builds OpenSceneGraph with extended plugin libraries, as
well as libraries depending on OpenSceneGraph like osgEarth.

Include "Tools.bawt"
Include "BasicLibs.bawt"
Include "OSG Basic.bawt"

Setup LibName ZipFile BuildFile BuildOptions

Extended OpenSceneGraph 3rd party libraries.

Setup Cal3D Cal3D-0.120.7z Cal3D.bawt
if { [UseVisualStudio "primary"] && [GetVisualStudioVersion] <= 2013 } {

Setup gdal gdal-2.2.0.7z gdal.bawt ; # Possible deadlock: MaxParallel=Windows-
gcc:1

Setup geos geos-3.6.3.7z geos.bawt ; # Possible deadlock: MaxParallel=Windows-
gcc:1
} else {

Setup gdal gdal-2.4.4.7z gdal.bawt ; # Possible deadlock: MaxParallel=Windows-
gcc:1

Setup geos geos-3.7.2.7z geos.bawt ; # Possible deadlock: MaxParallel=Windows-—
gcc:1
}
Setup GLEW GLEW-2.2.0.7z GLEW.bawt
Setup Gl2ps Gl2ps-1.4.2.7z Gl2ps.bawt
Libraries based on OpenSceneGraph.
Setup osgcal osgcal-0.2.1.7z osgcal.bawt MaxParallel=Linux:1 MaxParallel=Windows-
gcc:1

if { [UseVisualStudio "primary"] && [GetVisualStudioVersion] <= 2008 } {

Setup osgearth osgearth-2.8.7z osgearth.bawt ; # Possible deadlock:
MaxParallel=Windows-gcc:1
} else {

Setup osgearth osgearth-2.10.1.7z osgearth.bawt ; # Possible deadlock:

MaxParallel=Windows-gcc:1

BAWT User Manual Version 2.3.1, 2023-01-19 Page 19 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

Setup file OSG_Distribution.bawt

Use this Setup file to create an OpenSceneGraph distribution.

Builds OpenSceneGraph with basic plugin libraries.
Include "OSG Basic.bawt"

Builds OpenSceneGraph with extended plugin libraries, as

well as libraries depending on OpenSceneGraph like osgEarth.

Include "OSG_Extended.bawt"

Setup LibName ZipFile BuildFile BuildOptions

OpenSceneGraph distribution as InnoSetup installer.

Setup InnoSetup InnoSetup-6.2.0.7z InnoSetup.bawt
Setup Redistributables Redistributables.7z Redistributables.bawt
Setup SetupOsg SetupOsg.7z SetupOsg.bawt

Setup file MiscLibs.bawt

Builds miscellaneous libraries not related to Tcl or OpenSceneGraph.

Include "Tools.bawt"
Include "BasicLibs.bawt"

Setup LibName ZipFile BuildFile BuildOptions
if { ([UseVisualStudio "primary"] && [GetVisualStudioVersion] >= 2022) } {
Setup Boost Boost-1.78.0.7z Boost.bawt
} elseif { ([UseVisualStudio "primary"] && [GetVisualStudioVersion] >= 2015) || \
(! [UseVisualStudio "primary"] && [IsWindows]) || \
(! [IsWindows] && [IsGccCompilerNewer "4.9.0"]) } {

This boost version can only be compiled with
Windows: VS 2015 or newer.

Unix : gcc 4.9.0 or newer

Setup Boost Boost-1.75.0.7z Boost.bawt
} else {

This boost version cannot be compiled with MinGW gcc.

Setup Boost Boost-1.58.0.7z Boost.bawt
}
Setup ccl ccl-4.0.6.7z ccl.bawt
Setup CERTI CERTI-3.5.1.7z CERTI.bawt
MaxParallel=Windows-gcc:1 NoLinux
Setup Eigen Eigen-3.3.9.7z Eigen.bawt
Setup fftw fftw-3.3.9.7z fftw.bawt

if { [UseVisualStudio "primary"] && [GetVisualStudioVersion] <= 2013 } {
Setup GeographicLib GeographicLib-1.50.1.7z GeographicLib.bawt
} else {

Setup GeographiclLib GeographicLib-1.52.7z GeographicLib.bawt
}
Setup GeographicLibData GeographicLibData.7z GeographicLibData.bawt
Setup KDIS KDIS-2.9.0.7z KDIS.bawt
Setup libxml2 libxml2-2.9.14.7z libxml2.bawt
Setup sglite3 sqlite3-3.39.4.7z sglite3.bawt
Setup tinyxml2 tinyxml2-8.0.0.7z tinyxml2.bawt
Setup Xerces Xerces-3.2.4.7z Xerces.bawt

Setup file WinTools.bawt

Builds miscellaneous tools for Windows.

Setup LibName ZipFile BuildFile BuildOptions

Setup Blender Blender-3.0.0.7z Blender.bawt

Setup DirectXTex DirectXTex-2021 11.7z DirectXTex.bawt

Setup Doxygen Doxygen-1.8.15.7z Doxygen.bawt

BAWT User Manual Version 2.3.1, 2023-01-19 Page 20 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

Setup Vim Vim-9.0.0.7z Vim.bawt

3.3 Build Files

Build files include the logic needed to extract, configure, compile and distribute a library. They must
define the following two procedures, where 1ibName is replaced with the name of the library as
specified as first parameter of the setup procedure:

e TInit libName { libName libVersion }

e Build Il1ibName { libName libVersion buildDir instDir devDir distDir }

The parameter values for these procedures are supplied by the BAWT framework.

libName Library name as supplied with first parameter of procedure setup.

libVersion Library version extracted from source file name as supplied with second
parameter of procedure setup.

buildDir [file join [GetOutputBuildDir] S$1libName]

instDir [file join [GetOutputInstDir] S$libName]

devDir [GetOutputDevDir]

distDir [GetOutputDistDir]

The logic of a Build file will be explained with the following excerpt of the Build file of Tcl package udp:

Build file udp.bawt

Copyright: 2016-2023 Paul

Distributed under BSD lice

2ier (obermeier@tcl3d.orq)

BuildType: MSys / gcc

proc Init_udp { libName libVersion } {

SetScriptAuthor $1libName "Paul Obermeier" "obermeier@tcl3d.org"
SetLibHomepage $1ibName "https://sourceforge.net/projects/tcludp/"
SetLibDependencies $libName "Tcl"

SetPlatforms $1ibName "All"

SetWinCompilers $1ibName "gcc"

}

proc Build udp { libName libVersion buildDir instDir devDir distDir } {
if { [UseStage "Extract" $libName] } {
ExtractLibrary $1ibName $buildDir
}

if { [UseStage "Configure" $libName] } {
TeaConfig $1libName $buildDir $instDir
}

if { [UseStage "Compile" $libName] } {
MSysBuild $libName $buildDir "install-binaries"
}

if { [UseStage "Distribute" $1libName] } {
StripLibraries "$instDir"
LibFileCopy "$instDir"™ "S$devDir/[GetTclDir]" "x" o true
LibFileCopy "$instDir" "$distDir/[GetTclDir]" "*" true
}

return true

The 1nit 1ibName procedure must call the following BAWT framework procedures:

SetScriptAuthor Specify name and mail address of the build script author.
This information is used for command line option --authors.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 21 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

SetLibHomepage Specify the homepage of the library.

This information is used for command line option -—-homepages.
SetLibDependencies | Specify the dependencies of the library.

If the library has no dependencies, specify “None” as parameter.
Otherwise, a variable number of library names can be given.

This information is used for command line option --dependencies.
SetPlatforms Specify the supported platforms.

Valid keywords are: “windows” “Linux” “Darwin” “A11".

This information is used for command line option --platforms.
SetWinCompilers Specify the supported compilers on Windows. Optional.

The first specified compiler is used as default.

Valid keywords are: “gcc” “vs”.

This information is used for command line option --wincompilers.

The Build 1ibName procedure must check, which stage or stages should be executed (using
procedure usestage) and supply appropriate Tcl commands for each stage.

The following four stages can be handled in a build file:

e FExtract

e Configure

e Compile

e Distribute

See chapter 4 Build Stages for details on these stages and typical commands executed for each stage.

Errors can be indicated by calling the BAWT procedure setErrorMessage and returning false.
Optionally a procedure named £nv_1ibName may be specified in a build file. This procedure has the
same signature as the Build libnName procedure and may be used to specify library specific
environment variables (using BAWT procedure setknvvar) or to add a value to the system
environment variable Path (using BAWT procedure AddToPathEnv).

The following excerpt from the Tc1 build file shows a usage example:

proc EnV_Tcl { libName libVersion buildDir instDir devDir distDir } {
SetEnvVar "TCLLIBPATH" "S$devDir/[GetTclDir]/lib"
AddToPathEnv "S$devDir/opt/$libName/bin"

3.3.1 User supplied build files

BAWT version 2.0 introduced the functionality of user supplied build files, which allows to add custom
build files for existing libraries without the need to change the default build files.

To create a user supplied build file, make a copy of the build file (ex. tcllib.bawt) and give the copied file
the name tcllib_User.bawt. By appending the string _User to the root file name, BAWT automatically
detects the file as a user supplied build file and uses this file instead of the original build file.

You can then edit the user supplied build file according to your needs, ex. do not create the critcl
based modules for tcllib.

The user supplied build scripts must be located in directories from the library search paths, see chapter
3.1.3 Directory access.

Note, that user supplied build scripts are not considered in action --update, see chapter 5 Build
Process.

You may also give the user supplied build file any name you like. Then you have to notify BAWT to use
that file for a specific library by using command line option —-user.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 22 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

If you do not want to use the user supplied files, there is no need to delete or rename them. Specify
command line option --nouserbuilds to disable all user build files.

If using the graphical log viewer, the application of a user supplied build file is indicated in the
corresponding column, see next figure.

74 BAWT - Setup file H:/poSoft/BawtMine/Setup/AllLibs.bawt (vs2022 gec) - O X
file Settings Help
: Setup contains 140 libraries
Sl Build-tl Library Name l User] Version | Compiler l Build time] Est. (imel Mod. time l Update cause I Stage: A
70 70 tclcompiler 171 gee 0.00 2021-08-19 01:17:09 Nom
7 71 tclesv 23 c 0.00 2021-08-19 01:17:10
m-m-é--m— 2021-08-19 16:26:03
3 73 tciparser 18 gee 0.00 2021-08-19 01:17:31
74 74 tclpy 04 vs2022 0.00 2021-08-19 01:17:32 None
75 75 tchis 1722 gee 0.00 2021-08-19 01:17:33 None
76 | 76 tchs 142 gee 0.00 2021-08-19 01:17:34 None
7 77tk 844 gee 0.00 2021-08-19 0%:17:35 None
78 78 tdom 092 gee 0.00 2021-08-19 01:17:35 None v
< >
Log file H:/BawtBuilds/VsVersions/vs2022/x64/Logs/_BawtBuild.log
16:24:42 > Build tclcesv 2.3 (Release) A

16:24:42 > End tclesvy 2.3: 0.00 minuces

16:24:42 > Staxt tcllib 1.20 (Librazy #£72 of 140)
Build types : Release
Update cause: Build directory not existent
1€:24:42 > Clean tcllib (Release)
DirDelete
Directory: H:/BawcBuilds/VsVersions/vs2022/xé4/Release/Build/tcllidb
DirDelete
Direcrtory: H:/BawtBuilds/VaVersions/vs2022/xé4/Release/Inscall/cecllidb
16:24:43 > Build tcllib 1.20 (Release)
DizCreate
Directozy: H:/BawtBuilds/VsVersions/vs2022/x€4/Release/Build/tellid
DirxCreate
Directozry: H:/BawtBuilds/VsVersions/vs2022/xé4/Release/Install/tcllidb
16:24:43 > Extractlibrary

ZIP file : H:/poSoft/Bawt/Inputlibs/tcllib-1.20.7z
Target directory: H:/BawtBuilds/VsVersions/vs2022/x64/Release/Build/ctcllidb
16:24:52 > FileRename v
Auto Update: OFF

3.3.2 User configurable build files

Some of the library build files are already setup to supply user configuration options. These
configuration options can be supplied using the following methods:

As command line option --copt
As option string of the setup procedure, see chapter 3.2 Setup Files

The following build scripts currently support user configuration options:

Build script User options
Img.bawt
polImg.bawt . . .
TolKit bawt Any -DXXX option usable for CFLAGS environment variable
Tk.bawt

Build script User options

SetupOsg.bawt
SetupPython.bawt
SetupTcl.bawt

Tag string for generated Setup file name: Tag=xxx
Version string used for InnoSetup: Version=xxx

BAWT User Manual Version 2.3.1, 2023-01-19 Page 23 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

The following example using Tcl version 8.7.a4
--copt SetupTcl 'Tag=-BI' --copt SetupTcl 'Version=8.7.0.4"
generates an InnoSetup file with the following name:

SetupTcl -8.7.a4-x64 Bawt-2.3.1.exe

License Agreement
Please read the following important information before continuing.

Please read the following License Agreement. You must accept the terms of this
agreement before continuing with the installation.

TdTk License Terms

This software is copyrighted by the Regents of the University of California, Sun
Microsystems, Inc., Scriptics Corporation, and other parties, The following terms
apply to all files assodated with the software unless explicitly disdaimed in
individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license
this software and its documentation for any purpose, provided that existing
copyright notices are retained in all copies and that this notice is induded verbatim

in any distributions. Mo written agreement, license, or royalty fee is required for %

(@)1 gccept the agreement
{1 do not accept the agreement

| Mext = || Cancel

Build script User options
tcl3dFull.bawt Use static SDL library: StaticSDL=0N|OFF. Default: OFF.
Currently only supported for Visual Studio builds.

Example:
--copt tcl3dFull 'StaticSDL=ON'

Build script User options
tcllib.bawt Toggle critcl based compilation: Critcl1=0N|OFF. Default: ON.
Example:

--copt tcllib 'Critcl=O0OFF'

Build script User options
tcltls.bawt Toggle hardening: Hardening=0ON|OFF. Default: ON.
Example:

--copt tcltls 'Hardening=OFF'

If tcltls is compiled with hardening set to ON, it is compiled with option -fstack-protector-all,
which needs the 1ibssp-0.d11 library. That library is automatically copied into the Tcl/bin directory.
If hardening is set to OFF, tc1tls does not need this external dependency.

| Build script | User options |

BAWT User Manual Version 2.3.1, 2023-01-19 Page 24 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

OpensSceneGraph.bawt | Toggle example compilation:
-DBUILD OSG_EXAMPLES=ON|OFF. Default: OFF.

Keep the plugin directory structure:
KeepPluginFolder=0ON|OFF. Default: OFF.

Example:

-—copt OpenSceneGraph '-DBUILD OSG EXAMPLES=ON'

Build script

User options

osgearth.bawt

Toggle example compilation:

-DBUILD OSGEARTH EXAMPLES=ON|OFF. Default: OFF.

Example:

-—copt osgearth '-DBUILD OSGEARTH EXAMPLES=ON'

BAWT User Manual

Version 2.3.1, 2023-01-19
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

Page 25 of 74

BAWT - Build Automation With Tcl

4 Build Stages

This chapter describes the stages used in the BAWT framework to build the libraries specified in a Setup
file.

Bootstrap

v

Setup

[
¥

v

Clean

¥
Extract

¥

Configure
¥

Compile

v

Distribute

L J
Finalize

The stages are grouped into global and library specific ones. The global stages Bootstrap, Setup
and Finalize are called only once per BAWT execution, the library specific stages are called once
for each library.

Four of the library specific stages (Extract, Configure, Compile, Distribute) are user
configurable. Actions for these stages must be specified in the library Build files.

4.1 Stage Bootstrap

Extract and copy bootstrap tools.
This stage is executed automatically on each invocation of Bawt.tcl.
It is not executed, if command line option --1ist is specified.

BAWT needs the 7-Zip program to extract the library source distributions. For Windows and Darwin, a
version of the 7-Zip program is included in the BAWT framework. On Linux 7-Zip is typically already
available with the operating system or can be installed as Linux package p7zip or p7zip-full.

On Windows lots of the libraries are built with the MSYS/MInGW suite. Different versions of
MSYS/MIinGW are available on the BAWT download site.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 26 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

Inputs Stages Qutputs
4 | Bawt 4 | BawtBuild
y A Bootstrap j BaEEEL
Bootatrap-Windows 4 | Tools
7-Zip.zip Setup gce7.2.0_ié86-wed-mingw32
gecT.2.0_ i686-wed-mingw32.7z 4 | Windows
Clean o (B =56
F] Development
Extract - B
¥ | | opt
Configure - 7-Zip
Compile
Distribute
Finalize

Command line options influencing this stage:
——gccversion

--architecture

--toolsdir

The 7-Zip distribution itself must be compressed with standard ZIP, so that it can be extracted with
the vfs::zip package contained in the tclkit. All other tools and libraries are compressed in 7-Zip format
because of better compression rates (Example: MSYS/MInGW is 2 times smaller with 7z).

4.2 Stage Setup

Read and execute the specified Setup file.
This stage is executed automatically on each invocation of Bawt.tcl.

Check for existence of the library source code (either as a 7z file or directory) as well as the according
Build file. If these do not exist in the library directory InputLibs of the current working directory (additional
directories can be added with command line option --1ibdir) or are older than those available on the
BAWT website, they are downloaded from the BAWT website.

If this fails, a fatal error is thrown and the build process is stopped.

The version number of the library is extracted from the file or directory name of the library.

If build action is set to update, the necessary build stages are determined according to the existence
of the library source and Build files as well as to the modification times of the corresponding build and
install directories.

Checking for newer versions and automatic downloading may be skipped by specifying command line
option -—noonline.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 27 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

Inputs Stages www.bawt tcl3d.org
F Bawt
Bootstrap
InputLibks
__chl.bawt SEﬁUp __chl.bawt
Tcl-8.6.11.7z Tcl-8.6.11.7z
— Clean —
_udp.bawt _udp.bawt
§udp—l.ﬂ.ll.Tz Extract §udp—l.D.ll.Tz
Configure
Compile
Distribute
Finalize

Command line options influencing this stage:

--noonline
--norecursive
--sort

--url

4.3 Stage Clean

Remove library specific build and install directory.

Inputs Stages Outpts
—_—
Eﬂgtgnap o BawtBuild
¥] Windows
Setup 4 A6
4 Release
Clean 4 Build
Extract udp
4 Install
Configure udp
Compile
Distribute
Finalize

Command line options influencing this stage:

--clean
--timeout

BAWT User Manual

Version 2.3.1, 2023-01-19

Page 28 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

4.4 Stage Extract

Extract library source code into build directory.

Inputs Stages Qutputs
4 Bawt 4 BawtBuild
= Bootstrap A
InputLibks) Windows
Tcl.bawt Setup 4 L x86
Tel-8.6.11.72 4 Belease
& Clean .
| udp.bawt] Build
udp-1.0.11.7= Extract udp
h_dHakEfile.in
Configure
Compile
Distribute
Finalize

In stage Extract the library source code will be extracted and copied into the build directory. This is
achieved by calling the BAWT procedure ExtractLibrary, Which cares about having either a source
directory or a compressed source file.
Ideally the source code can be compiled without any changes. If changes have to be done, it is preferred
not to edit the source code manually, but make the changes in the build script after extraction.
BAWT has two utility procedures for this purpose:

e ReplaceLine

e ReplaceKeywords

Command line options influencing this stage:
-—extract

4.5 Stage Configure

Configure library for compilation.

BAWT User Manual Version 2.3.1, 2023-01-19

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

Page 29 of 74

BAWT - Build Automation With Tcl

Inputs Stages Outputs
—_—
EUDtSUap 4 BawtBuild
F] Windows
Setup 4 | x86
o Relsase
Clean 4 Build
Extract udp
h__HakEfilE.in
Configure | Makefile
Compile
Distribute
Finalize

In stage Configure the library will be configured, which generates the appropriate make files for the
chosen compiler and platform.
The following high-level BAWT procedures are available for configuration tasks:
e CMakeConfig when using the CMake build infrastructure.
e MSysConfig when using a configure script with “standard” options.
e TeaConfigwhen using the Tcl Extension Architecture for Tcl packages.
See the source code of Bawt.tcl to get the default options set by these procedures.

If the build infrastructure does not fit any of the mentioned one above, the configuration command must
be built up as a Tcl string and executed with the generic BAWT procedure MSysRun.
See the miscellaneous build scripts for usage examples.

The following BAWT procedures are typically used for configuration tasks:
e TIsIntel
(] IsArm
e TIsDebugBuild
e TsReleaseBuild
e TsWindows
e TIsLinux
e TIsDarwin
e TsUnix

Command line options influencing this stage:
--configure

-—architecture

-—-compiler

--gccversion

--buildtype

—-—-copt

4.6 Stage Compile

Compile and install library.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 30 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

Inputs Stages Outputs
—]
EUDtSUap 4 BawtBuild
F Windows
Setup o | B x86
4 Release
Clean 4 | Build
Extract udp
4 Install
Configure s b B
bin
Compile .
Distribute
Finalize

In stage Compi le the library will be compiled and installed.
The following high-level BAWT procedures are available for compilation tasks:
e CMakeBuildwhen using the CMake build infrastructure.
e MSysBuildwhen using the Tcl Extension Architecture for Tcl packages.
If the build infrastructure does not fit any of the two mentioned above, the compilation command must
be built up as a Tcl string and executed with either BAWT procedure MSysRun OF DosRun.

Command line options influencing this stage:
--compile

--numjobs

--nostrip

--noimportlibs

4.7 Stage Distribute

Copy relevant files into developer and user distribution directories.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 31 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

Inputs Stages Qutputs
—
Enntsnap 4 BawtBuild
4 | Windows
Setup 4 b x86
4 Development
Clean 2 B opt
Extract F Belease
4 | Build
Configure 4 | Distributien
F] opt
Compile o 11
Distribute 4 4110
udp
Finalize

In stage Distribute the library will be copied into the distribution and development directories.
The following BAWT procedures are typically used for distribution tasks:

e SingleFileCopy
e MultiFileCopy
e LibFileCopy

e FileRename

e UseTclPkgVersion

e TIsDebugBuild

e TIsReleaseBuild
e TsWindows

e TsLinux

e TIsDarwin

e IsUnix

e [ErrorAppend

Command line options influencing this stage:

--distribute
--noversion

4.8 Stage Finalize

Perform final actions, optionally call user supplied Finalize procedure and print summary.

BAWT User Manual

Version 2.3.1, 2023-01-19

Page 32 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

Inputs Stages Qutputs

L

UserFinalize.bawt Bootstrap 4 BawtBuild

F Windows

Setup 4 b x86

4 Development
Clean bin

SetEmv-Windows—x86 . bat
Extract —

Configure

Compile

Distribute

Finalize

The Finalize stage is performed automatically at the end of the build process or can be manually
selected with command line option --finalize.

The Finalize stage creates an environment file in the Development/bin directory called SetEnv-*.bat or
SetEnv-*.sh. It contains all the environment variables set by the Env 1ibName procedures of the libraries.

If running on Windows with Visual Studio it also copies the appropriate Visual Studio runtime libraries
into the Development/bin directory. If you do not want to copy these runtime libraries, use command line
option -—-noruntimelibs.

To supply a user defined finalize action to BAWT, create a file containing a procedure named Finalize.
See the file UserFinalize.tcl in BAWT directory Setup as an example.

You can use any standard Tcl procedure or one of the BAWT procedures like Log or MultiFileCopy
in the Finalize procedure.

To make the file containing your Finalize procedure available for the BAWT build process, use
command line option --finalizefile.

Command line options influencing this stage:
--finalize

-—finalizefile

--noruntimelibs

BAWT User Manual Version 2.3.1, 2023-01-19 Page 33 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

5 Build Process

This chapter gives insight into the BAWT build process from the perspective of a user of BAWT as well
as from the perspective of a developer, who wants to extend BAWT with new libraries.

5.1 User Perspective

As described in the previous chapter a specific stage can be executed with one of the following
command line action options. These specific action options are typically only used when integrating a
new library into BAWT.

--clean : Clean library specific build and install directories.

--extract : Extract library source from a ZIP file or a directory.

--configure : Perform the configure stage of the build process.

--compile : Perform the compile stage of the build process.

--distribute: Perform the distribution stage of the build process.

--finalize : Generate environment file and call user supplied Finalize procedure.

The following global command line action options are typically used for building or updating the BAWT
libraries.

--complete : Perform the following stages in order:
clean, extract, configure, compile, distribute, finalize.
--update : Perform necessary stages depending on modification times.
Note: Global stage finalize is always executed.
--simulate : Simulate update action without actually building libraries.
--touch : Set modification times of library build directories to current time.

Option --complete makes a complete rebuild of the specified libraries, while -—update checks, which
libraries have to be rebuilt.

The necessary build stages are determined according to the existence of the library source and Build
files as well as to the madification times of the corresponding build directories.

It is also checked, if the build of a library has been cancelled or stopped by checking for the existence
of a so-called Progress File, which is created in the Logs directory at the start of a library build and deleted
after a successful library build.

Additionally, a check is performed, if a library is dependent of another library, which has been rebuilt.
This recursive dependency checking can be switched off with command line option --norecursive.

The --simulate option performs the same actions as the --update option, but does not build anything.
It just prints out, which libraries would be rebuilt, if you would execute the --update command line
option.

It often happens, that only cosmetic changes are done to a Build file, which would cause this library
(and all dependent libraries) to be rebuilt. To avoid rebuilding of these libraries, specify the option --
touch, which sets the modification times of the build directories to the current date and time.

5.1.1 Use Case: Cosmetic change of Build file CMake.bawt

Due to the number of dependencies, a change of Build file CMake.bawt would cause a lot of libraries to
be rebuilt, as the next screenshot of the BawtLogViewer shows, when executing a --simulate run.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 34 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

Log file C:/BawtBuilds/BawtBuildAll/vs2019/x64/Logs/_BawtBuild.log

None

Update Recursive dependency on CMake
Update Souxce file newer than build dir
None

Update Recursive dependency on BNG
Update Recursive dependency POAPPS
Update Recursive dependency ENG
Update Recursive dependency CMake
Update Recursive dependency CMake
Update Recursive dependency CpenSceneGraph
Update Recursive dependency PNG
Update Recursive dependency CalsD
Update Recursive dependency CMake
Update Recursive dependency 1ibgd
Update Recursive dependency Freetype
Update Recursive dependency CMake

91: ffmpeg

92: mawt

93: poApps

94: tksqlite

95: tzint

96: BawtLogViewer
97: Freetype

98: Gl2ps

99: OpenSceneGraph
100: OpenSceneGraphData
101: libgd

102: osgcal

103: osgearth

104: tclgd

108: FIGL

106: tcl3dFull

e o w

w

* OO
(==

T MO WO

O v o
'

w w

4.1
0.2
2.4
0.5
1.2
0.1
2.1
1.4
3.6.
3.4
2.2
0.2
2.1
1.2
2.1
0.9

Total: 0.05 minutes

¢
Auto Update: OFF

To avoid the rebuild of all of these libraries, which may take a lot of time, we execute a --touch run.
Note the execution of the pi rTouch procedure of the BAWT framework shown in the text widget in the
lower half of the window.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 35 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

Log file C:/BawtBuilds/BawtBuildAll/vs2019/x64/Logs/_BawtBuild.log

09:52:15 Start Boost 1.68.0 (Library #1 of 106)
Build types : Release
09:52:15 > Build Boost 1.68.0 (Release)
DirTouch
Directory: C:/BawtBuilds/BawtBuildAll/vs2019/x64/Release/Build/Boost
09:52:15 > End Boost 1.68.0: 0.00 minutes

09:52:1% Start CMake 3.14.5 (Library #2 of 106)
Build types : Release
Add to Path : C:/BawtBuilds/BawtBuildAll/vs2019/x64/Development/opt/CMake/bin
09:52:1% Build CMake 3.14.5 (Release)
DixTouch
Directory: C:/BawtBuilds/BawtBuildAll/vs2019/x64/Release/Build/CMake
09:52:15 > End CMake 3.14.5: 0.00 minutes

09:52:15 Start Doxygen 1.8.15 (Library #3 of 106)

Build types : Release

Add to Path : C:/BawtBuilds/BawtBuildAll/vse2019/x64/Developmentc/opt/Doxygen
09:52:15% Build Doxygen 1.8.15 (Release)

<

Auto Update: OFF

If we now perform an --update run, none of the libraries are rebuilt.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 36 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

File Help
106 libraries

Build-# | Library Name | Version | Build time | Mod, time | Update cause
Boost 1680 | .00 minutes 2019-05-13 19:05:56
CMake 3145 | 0.00minutes 2019-D6-08 14:44:30
Doxygen 1815 | 0.00minutes 2019-05-13 16:06:36
Eigen 337 | 0.00minutes 2019-05-13 19:06:52
GLEW 210 | 000minutes 2019-06-08 14:45%:59
Geographiclib 149 | 000 minutes 2019-06-08 14:46:55
GeographicLib... 0.00 minutes 2019-06-08 14:47:11
JPEG 9 000 minutes 2019-05-13 19:10:36
KDIS 290 | 0.00minutes 2019-06-08 14:51:37
SDL 208 | 000minutes 2019-06-08 14:52:26

i

C="RNT - - - - W S I Y
P P T

Log file C:/BawtBuilds/BawtBuil dAIL V2019 084/ Logs/_BawtBuild.log

Start Booat 1.62.0 (Library #1 of 106)
Build types : Helease

Build Boost 1.68.0 (Releass)

End Boost 1.68.0: 0.00 minutes

Scarc CHake 3.14.5 (Library #2 of 106)

Build types : Release

Add te Path : C:/BawcBuilds/BawcBuildAll/vs2019/x64/Development,/ope/CHake/bin
Build CHake 3.14.5 (Releasae)
End CHake 3.14.5: 0.00 minutes

Start Doxygen 1.8.15 (Library #3 of 106)
Build types : Release
Add te Pach : C:/BawtBuilds/BawcBuildhll/vs2013%/x64/Developmentc,/opc/Doxygen
:53:41 Build Doxygen 1.8.15 (Releass)
5341 End Doxygen 1.8.15: 0.00 minuces

:53:41 Svart Eigen 3.3.7 (Library #4 of 106)
Build types : Release

sES A Band Td Tadmwmem 3 F F iFafmmm=mi

Auto Update: OFF

5.1.2 Compiler selection on Windows

On Linux and Darwin only the gcc compiler suite is supported.
On Windows gcc and Visual Studio are supported. Some packages can be compiled only with gcc or
only with Visual Studio. More and more libraries can be compiled with either gcc or Visual Studio.

Starting with version 2.0, BAWT supports the notion of primary and secondary compilers on Windows.
Which compilers are supported by a build script is indicated with BAWT procedure SetWinCompilers.

proc Init tkdnd { libName libVersion } {
SetScriptAuthor $libName "Paul Obermeier" "obermeier@tcl3d.org"
SetLibHomepage $1libName "https://github.com/petasis/tkdnd"
SetLibDependencies $1libName "CMake" "Tk"
SetPlatforms $1ibName "All"
SetWinCompilers $1libName "gcc" "vs"

}

The above call of setwincompilers indicates, that the library can be compiled by both Visual Studio

and gcc.
To see, which Windows compilers are supported, use the --wincompilers command line option or
look for that information in the corresponding build files.

To determine, which compiler should be used in an actual compilation, there is the possibility to specify
the compiler using command line option --compiler.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 37 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

This option has been extended to not only accept gcc Or vs20xx as arguments, but also a combination
of both using a plus sign as separator, ex. gcc+vs2019.

If a library does not support the Windows compiler selected when calling BAWT, then that library is
excluded from the build. The log file contains a message like the following:

15:02:30 > Start Boost 1.58.0 (Library #2 of 137)
Build types : Release
15:02:30 > End Boost: Excluded from build

(Compiler gcc not supported)

Behaviour before BAWT version 2.0:

If the chosen Windows compiler is Visual Studio, but the package only supports gcc, the gcc compiler
was automatically chosen as secondary compiler, as the MSYS/MinGW suite is part of BAWT and
therefore always available. The other way is not supported, as a Visual Studio compiler may not be
available.

The following 3 options of choosing a compiler on Windows were available up to BAWT version 1.3.0.

BAWT 1.3.0 Command line option --compiler SetWinCompilers

gcc Vs gcevs
Option 1 Not specified gcc Excluded gcc
Option 2 --compiler gcc gcc Excluded gcc
Option 3 —-compiler vs20XX gcce Vs 'S

Behaviour since BAWT version 2.0:

With BAWT 2.0 two new options have been added, which specify the primary and secondary compiler.

BAWT 2.0.0 Command line option --compiler SetWinCompilers

gcc Vs gccvs
Option 1 Not specified gcc Excluded gce
Option 2 -—-compiler gcc gcc Excluded gce
Option 3 —-—compiler vs20XX Excluded 'S 'S
Option 4 —-compiler gcct+vs20XX gcc 'S gcc
Option 5 --compiler vs20XX+gcc gcc VS VS

Options 1 and 2 work the same way as they did in BAWT versions before 2.0. Option 3 now does not
compile packages supporting only gcc. This behaviour can now be achieved by specifying Option 4
(vs20XX+gcc).

To support this new functionality, several incompatible changes had to be implemented:

New procedures

Removed procedures

SetCompilerVersions

GetVSCompilerVersionNumber

GetCompilerVersions IsVSCompilerNewer
UseVisualStudio IsVSCompiler
GetVisualStudioVersion SetForceVSCompiler
NeedDl112Lib ForceVSCompiler

Procedure Getcompilerversion NOW has a changed and extended signature.

Compilation of Tcl/Tk and all supported Tcl packages (everything included in Setup files Tcl_Basic.bawt
and Tcl_Extended.bawt) is possible without using Visual Studio with the exception of building Visual

BAWT User Manual Version 2.3.1, 2023-01-19

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

Page 38 of 74

BAWT - Build Automation With Tcl

Studio compatible Tcl and Tk stub libraries. Those stub libraries can only be compiled using Visual
Studio.

To generate Visual Studio compatible Tcl and Tk import libraries (*.lib) the BAWT procedure p112Lib
is used. It creates the import library from the DLL by using the link.exe program, which is part of Visual
Studio.

If Visual Studio is not available, a warning message like the following is issued:
Warning > D112Lib tk86.lib: Creating import libraries needs VisualStudio

To avoid these warnings, add command line option --noimportlibs, if Visual Studio is not available
or import libraries are not needed.

5.1.3 Online updates of libraries

If using the online update functionality, it is recommended that the local BAWT version is identical to
the remote version on the BAWT server. If the local major or minor version is older than the remote
version, a fatal error is generated:

FATAL > Remote major version 2.0.0 different to major local version 1.3.0

If only the patch version differs, a warning is issued.

You are able to download with different local and remote versions by specifying the --noexit command
line option, but this is not recommended.

To have a consistent set of library versions or if using BAWT on a computer without internet connection,
use the command line option --noonline to avoid checking for updates and automatic downloading of
new libraries.

5.1.4 Use the generated libraries

To use the generated libraries, the following possibilities exist:
1. Manually copy the appropriate directory.

2. Use the Finalize procedure.

3. Create a software distribution setup file

Manually copy the appropriate directories

Copy the appropriate directories from either the Distribution or Development directory to a suitable
location on your computer.

For example, after executing the Setup file Tc/_Basic.bawt to generate a Tcl distribution for Windows,
copy output directory Development\opt\Tcl to C:\Tc/ and set the environment variables PATH and
TCLLIBPATH.

Note, that the entries of the PATH variable on Windows are separated by semicolons (;). The entries
of variable TCLLIBPATH are separated by spaces and directory paths must use slashes (/) instead
of backslashes ().

On Unix the environment variables are typically set in the shell resource file, ex. .bashrc:

Use the Finalize procedure

Instead of doing the copy manually, it is easier and faster to do the copying in the Finalize stage. The
BAWT framework contains a template Finalize file Setup/UserFinalize.bawt, which is shown below.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 39 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

Adapt the installation paths according to your local needs.

Example script for user supplied Finalize procedure.
‘f‘z‘

The procedure copies the generated Tcl distribution
from the Development folder into a folder specified
in your Path environment variable.

i

You have “he installation paths (tclRootDir)
according needs.

#

=+

To execute the Finalize pr e, the na

must be specified on the B command line option
"--finalizefile".
proc Finalize {} {

Log "Finalize (User defined)"

For safety reasons this is just a dummy mode.

Remove the next lines to enable functionality.

if {1} {
Log "Finalize Dummy mode" 2 false
return

if { [IsWindows] } {
set tclRootDir "C:/opt"
} elseif { [IsLinux] } {
set tclRootDir "~/opt"
} elseif { [IsDarwin] } {
set tclRootDir "~/opt"
} else {
ErrorAppend "Finalize: Cannot determine operating system" "FATAL"

set tclInstDir [file join $tclRootDir "Tcl"]

Log "Installing Tcl into $tclInstDir" 2 false
DirDelete $tclInstDir

MultiFileCopy [file join [GetOutputDevDir] [GetTclDir]] S$tclInstDir "*" true

Create a software distribution setup file

There are currently two Build files to create software distribution setup files:
e SetupTcl.bawt to create a Tcl Batteries-Included software distribution
e SetupOsg.bawt to create an OpenSceneGraph software distribution

These scripts take all contents of the Release/Distribution directory and create a software distribution
setup file. This setup file is created with InnoSetup for Windows platforms and as a simple, self-
extracting shell script for Unix platforms.

The software distribution setup file itself is generated in the Release/Distribution directory.
The software distribution setup file name for Tcl/Tk has the Tcl version, the architecture and the BAWT

version used to build the distribution encoded into the file name.
Example: SetupTcl-BI-8.6.12-x64 Bawt-2.3.1l.exe

BAWT User Manual Version 2.3.1, 2023-01-19 Page 40 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

The software distribution setup file name for OpenSceneGraph has the OSG version, the compiler
version, the architecture and the BAWT version used to build the distribution encoded into the file name.
Example: SetupOsg-3.4.1-vs2013-x64 Bawt-2.3.1l.exe

In the same directory as the distribution setup files, text files named SetupTcl-8.6.12.txt resp. SetupOsg-
3.4.1.txt are created, which list the contents of the software distribution setup file.

This list is used to display the contents of the InnoSetup based distribution setup file, see the following
screenshot for an example.

Information
Please read the following important information before continuing.

When you are ready to continue with Setup, didk Mext.

SawiTd is a Batteries Induded Td, Tk distribution generated with BAWT,

To build your own Td distribution or setup program, see BAWT at
http: /v, bawt, td 3d.org

Motes:

Choose an installation directory path without spaces, as some Td packages do
not wark otherwise,

If an older version of BawtTd is already installed on your computer, it is
recommended to uninstall the previous version before continuing.

The following 84 packages and programs are included in the distribution:
Td-8.6.11

Tk-3.6.11

apave-3.2.8

I e o T O .1

| < Back ” Mext = |

For Unix (Linux and Darwin) a simple shell script-based distribution setup file is generated. If called
without arguments, a simple usage message is displayed.

> ./SetupTcl-BI-8.6.12-x64 Bawt-2.3.1.sh

Usage: SetupTcl-BI-8.6.12-x64 Bawt-2.3.1.sh InstallationDirectory
Install folder Tcl into specified installation directory

If called with a not existing installation directory path, an error message is printed onto standard output.

> ./SetupTcl-BI-8.6.12-x64 Bawt-2.3.1.sh asdf

Installation directory asdf does not exist.
Check name or create manually.

If called with a valid installation directory, the contents are extracted into that directory and a message
on how to set the needed environment variables is printed onto standard output.

> ./SetupTcl-BI-8.6.12-x64 Bawt-2.3.1.sh ~/bin
Extracting Tcl into /home/obermeier/bin ...

Add the following lines to your shell resource file (ex. ~/.bashrc):

BAWT User Manual Version 2.3.1, 2023-01-19 Page 41 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

export PATH="/home/obermeier/bin/Tcl/bin:S$SPATH"
export TCLLIBPATH="/home/obermeier/bin/Tcl/lib $TCLLIBPATH"

5.1.5 Changeicons of executables

To change the icon of the generated tclkits and starpacks as well as the information shown about
an executable on Windows (Resource), two command line options exist in the BAWT framework:

e -—--iconfile

e -—--resourcefile

The user supplied icon and resource files can be either located in the Resources directory. Then it is
sufficient to just specify the name of the files. If the files are located at other places, the path name
of the files must be absolute.

Use the icon file poSoft.ico and resource file poSoft.rc supplied by BAWT in directory Resources as starting
point for your adapted ones.

If specifying your own resource file, do not change the name of the icon file in the following line of your
resource file:

‘ tk ICON DISCARDABLE "tclkit.ico"

The name must always be tclkit.ico.

If specifying a user supplied icon file with command line option --iconfile, the icon file will be copied
into the build directory Tclkit/kbskit/win and renamed to tclkit.ico, so that it is possible to only specify an
icon file without specifying a resource file.

Changes to the used icon and resource file are not considered by the BAWT update check process,
so if using these options, it is necessary to at least rebuild package tclkit and its dependencies.

5.1.6 Parallel builds

All build environments used by BAWT support parallel compilation. The number of parallel build jobs
can be specified globally for all libraries with command line option --numjobs.

Alternatively, the number of parallel build jobs can be restricted for specific libraries as additional
parameter mMaxParallel in the Setup procedure. See chapter 3.2 Setup Files for a description of the
Setup procedure and its parameters.

The following libraries consistently produce deadlocks when executed in parallel, so the number of
parallel jobs is already limited in the corresponding BAWT Setup files by specifying option

MaxParallel=Windows-gcc:1.

. CERTI

e PNG

e osgcal

e tserialport

Other libraries which occasionally tend to deadlock are the following:
e freeglut
e gdal
® geos
e openjpeg

BAWT User Manual Version 2.3.1, 2023-01-19 Page 42 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

e OpenSceneGraph
e osgearth
e SDL

Deadlocks have occurred until now only on Windows using the gcc compiler. |

As reference point, the next table shows typical build times on my laptop for libraries needing 2 minutes
or more. The laptop is equipped with an Intel QuadCore i7-4700 2.4Ghz with HyperThreading. 8 parallel
compile jobs have been used.

Estimated build time Libraries
~ 2 minutes ccl libgd libwebp SetupTcl xz
~ 3 minutes geos kdis TIFF
~ 4 minutes SWIG tcltls tcl3dFull
~ 5 minutes gdal Tclkit Xerces
~ 6 minutes curl gdal libressl Tcl
~ 7 minutes boost ffmpeg Img
~ 9 minutes fftw
~ 25 minutes osgearth
~ 35 minutes OpenSceneGraph

5.2 Developer Perspective

5.2.1 Upgrade alibrary

If you want to use a new version of a library already supported by BAWT, chances are high, that the
existing build scripts still work with the new version.

So just pack the sources of the new version into a 7z file and edit the corresponding entry in the Setup
file. Also check the comments of the library build script regarding manual changes to the source code.

If the library is a Tcl package, you might get warnings from the Starpack build scripts. This indicates,
that you will have 2 different versions in the Tcl library directory, which might lead to troubles.
The following warnings are issued, when upgrading library tablelist 6.10 to tablelist 6.11:

MakeStarpack: Found more than 1 package with prefix tablelist*:
TclBasic-8.6.12/vs2013/x64/Development/opt/Tcl/lib/tablelist6.10
TclBasic-8.6.12/vs2013/x64/Development/opt/Tcl/lib/tablelist6.11

So, when upgrading one or more libraries, you should either remove the development and distribution
directories and do a fresh rebuild. The other possibility is to search for the directories of the old version
(tablelist6.10 in the above example) and just remove these directories from the development and
distribution directory.

Another option is to use command line option --noversion, which strips the version number from the
names of Tcl package directories.

5.2.2 Add alibrary

Library sources should be specified either as a directory named $libName-$libVersion or as a
compressed file named $libName-$libVersion.7z.

“ &

libName must not contain a
from the version string.

character, because this character is used to separate the library name

BAWT User Manual Version 2.3.1, 2023-01-19 Page 43 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

Itis easily possible to extend the libraries compiled by BAWT with COTS software, ex. company specific
libraries. One possibility is to just add these libraries into the InputLibs directory of the standard BAWT
distribution. The better solution is to create a separate directory (ex. BawtMine), which holds your
libraries in a similar structure like BAWT does. In this directory you create adapted versions of the batch
scripts (ex. MyBuild-Windows.bat) and add Setup files, which reference your libraries as well as libraries
of the standard BAWT distribution.

4 | Bawt 4 | BawtMine
Bootstrap-Darwin InputLibs
Bootstrap-Linux BEesources
Bootstrap-Windows Setup
Inputlibs | |MyBuild-Darwin.sh
Resources __|MyBuild-Linux.sh
Jetup | |MyBuild-Windows .bat
Tests
|Bawt.tcl

| Build-Darwin.sh
h_JBuild—Linux.sh
IBuild—Windcws.bat
h_Jtclkit—ﬁarwinE4
h_Jtclkit—LinuxSE
Itclkit—LinuxE4

tolkit-win3Z.exe

If you want to use a library, which is currently under development, it is possible to add the directory
containing the local checkout of the library.

The following example shows the Setup file mawtSvn.bawt used to compile the current version of MAWT
from my local SVN checkout.

Include "Tools.bawt"
Include "BasicLibs.bawt"
Include "Tcl Basic.bawt"

if { [IsWindows] } {

set dirName C:/poSoft/Mawt
} elseif { [IsLinux] } {

set dirName /home/obermeier/poSoft/Mawt
} else {

set dirName /Users/obermeier/poSoft/Mawt
}

Setup mawt $dirName mawt.bawt Version=0.4.0

Note, that the checkout directory typically has no version number in it, so the version number is
specified as optional argument of the Setup procedure.

5.2.3 Add a Tcl program

Adding a Tcl program is similar to adding a library, i.e. the sources must be supplied as a compressed
file as well as a corresponding Build script.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 44 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

The Tcl program will be created as as starpack, i.e. a standalone executable containing the Tcl
interpreter (tclkit), the program scripts as well as needed Tcl packages.

To ease the generation of starpacks, the BAWT framework offers procedures mMakeStarpackTcl and
MakeStarpackTk for this purpose. Use MakeStarpackTcl, if you want to create a console program,
and MakeStarpackTk, if you want to create a program with a graphical Tk user interface.

proc MakeStarpackTcl { appScript appName starpackName buildDir args }

appScript Full path to the startup script of the Tcl program.
appName The name of the application. Typically $1ibname.
starpackName | The name of the starpack executable. Typically $1ibName [GetExeSuffix].
buildDir The name of the output directory. Typically sinstpir.
args A list of files and directories to be included in the starpack. The path names of the
files and directories must be absolute pathes.
The files of the Tcl program are typically located in $buildDir.
Needed Tcl packages are located in [GetDevTclLibDir].

Example Build files using these procedures are:
e BawtlLogViewer.bawt
o gorilla.bawt
o poApps.bawt
e tclssg.bawt
e tksqlite.bawt

The signature of procedure MakeStarpackTk is identical to procedure MakeStarpackTcl.

A starpack on Darwin is a directory using the extension .app.

5.2.4 Manually compile alibrary

To configure and compile a library, the BAWT framework uses shell (*.sh) or batch files (*.bat). These
batch files are created in the configure and compile phases and stored in the Build directory (or a
suitable subdirectory like eg. win) of the library.

You can use these batch files to configure or compile a library manually. This is especially useful while
developing the build file for a new BAWT library.

Before running one of the shell or batch files on the command line, you have to remove the last line
of the script containing the exit command or replace the exi+ command with an echo cOmmand.

You can easily open a library specific DOS or MSys shell window via the context menu of the
BawtLogViewer, see chapter 6.1 Graphical Log Viewer.

The first part of the file name defines the configure and compile environment and corresponds to the
general BAWT procedures for executing commands with the same name:
_Bawt_DosRun:
e The commands will be executed in a standard Windows command line environment.
¢ If running the command manually on Windows, it must be executed from a DOS command shell.
e Example: > Bawt DosRun CMakeBuild.bat
_Bawt_MSysRun:.
e The commands will be executed in the MSYS/MinGW environment or a standard shell
environment on Unix systems.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 45 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

¢ If running the command manually on Windows, it must be executed from a MSYS/MIinGW shell.
¢ Note, that on Unix systems all files are prefixed with _Bawt_MSys.
e Example: > sh Bawt MSysRun MSysBuild.bat

The second part specifies the caller of the DosRun or MSysRun command. This is typically one of the
following standard BAWT procedures:

e NMakeBuild

e MsBuild

e (CMakeConfig

e CMakeBuild

e MSysConfig

e TeaConfig

e MSysBuild

For libraries, which cannot be built with one of the above standard procedures, it is common usage to
specify the caller in the form:

e Bawt LibName Configure

e Bawt LibName Compile

One example is the Boost library, which has special configure and compile commands:
e Bawt DosRun Boost Configure.bat
e Bawt DosRun Boost Compile.bat

When using NMakeBuild or MsBuild, there is no need to specify commands for the configuration
phase.

e Bawt DosRun MsBuild.bat

e Bawt DosRun NMakeBuild.bat

All other commands typically come in pairs, so you will see the following combination of configure and
compile batch scripts:

e Bawt DosRun CMakeConfig.bat
e Bawt DosRun CMakeBuild.bat

e Bawt MSysRun TeaConfig.bat
e Bawt MSysRun MSysBuild.bat

e Bawt MSysRun MSysConfig.bat
e Bawt MSysRun MSysBuild.bat

e Bawt MSysRun CMakeBuild.bat
e Bawt MSysRun CMakeConfig.bat

5.3 Known issues

5.3.1 Build deadlock

Problem:
The build process does not continue with specific libraries.

Workaround or solution:
This is due to errors in the build infrastructure of the corresponding library in conjunction with parallel
builds. See chapter 5.1.6 Parallel builds for details.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 46 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

5.3.2 BawtLogViewer shows incorrect build time

Problem:

If the build of a library starts before midnight and extends over midnight, the build time of this package
will be negative in the BawtLogViewer table display, as the log file only stores time values as
HH:MM:SS.

Workaround or solution:
None.

5.3.3 Package SWIG

Problem:
SWIG build fails occasionally on Windows due to problems renaming files.
This behavior was noticed on systems running Sophos AntiVirus only.

Workaround or solution:
No real solution, other than retrying the build until it succeeds.

5.3.4 Package Trf

Problem:
The CRC module of Tcl package Trf crashes when compiled in x86 mode on Windows.

Workaround or solution:
None.

5.3.5 Package tcllib/crc32

Problem:
The crc32 module of Tcl package tcl11ib crashes when compiled in x86 mode on Windows.

Workaround or solution:
The crash is not the fault of module crc32 itself, but of the CRC module of package Trf, which gets

called, if the Trf extension is available.

Either remove package Trf or remove loading of accelerator tr £ in file crc32.tcl

foreach e {trf critcl} {
if {[LoadAccelerator $e]} break

}

5.4 Tips and Tricks

5.4.1 Tips for Windows
Check generated library

To check the architecture of a generated dynamic library, execute the following command in a Visual
Studio developer command prompt:

> dumpbin /headers XXX.dll | more

The architecture of the library is contained in the file header section of the output:

FILE HEADER VALUES

BAWT User Manual Version 2.3.1, 2023-01-19 Page 47 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

machine (x64)

5.4.2 Tips for Linux
Check generated library

To check, if a library has been stripped, the commands nm or file can be used. To check the
architecture of a generated library, the command file can be used.

A library built for Release should have no symbols and thus should generate the following outputs:

> nm libjpeg.so0.9.1.0
nm: libjpeg.s0.9.1.0: no symbols

> file libjpeg.so0.9.1.0
libjpeg.s0.9.1.0: ELF 32-bit LSB shared object, Intel 80386, version 1 (SYSV),
dynamically linked, stripped

A Debug build should have symbols and thus should generate the following outputs:

> nm libjpeg.so0.9.1.0 | more
0002ffa0 r aanscalefactor.4133
0002fa60 r aanscalefactor.4178
0002ffe0 r aanscales.4125

> file libjpeg.so0.9.1.0
libjpeg.s0.9.1.0: ELF 32-bit LSB shared object, Intel 80386, version 1 (SYSV),
dynamically linked, not stripped

5.5 Advanced Batch Scripts

This section contains the batch scripts, which are used to generate the Tcl-Pure (minimal Tcl/Tk
distribution) as well as the Tcl-BlI (Batteries Included Tcl/Tk distribution) distributions.

5.5.1 Build Tcl-Pure distributions

The following batch scripts are used to create the Tcl-Pure distributions for all supported Tcl versions.
A separate directory (C:/BawtBuilds/TcIMinimal/TcIMinimal-%TCLVERS%) is created for each Tcl version
containing both the x86 and x64 versions.

The needed MSYS/MInGW versions are located in directory C:/BawtBuildTools (using option --
toolsdir) to avoid extracting these for each Tcl version.

Batch script UpdateTcIMinimal.bat

@echo off
setlocal

rem Architecture, TclVersion, TclString and Finalize flag are mandatory parameters
if "%1" == "" goto ERROR

if "%2" == un gOtO ERROR
if "%3" == un gOtO ERROR
if "yy" == nun gOtO ERROR

set ARCH=%1

set TCLVERS=%2
set TCLSTRING=%3
set FINALIZE=%u
shift

BAWT User Manual Version 2.3.1, 2023-01-19 Page 48 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

shift
shift
shift

rem If no target is given, use target "all".
if "%1"=="" goto BUILDALL

rem Loop through the rest of the parameter list for targets.

set TARGETS=

:PARAMLOOP

rem There is a trailing space in the next line. It's there for formatting.
set TARGETS=%TARGETS%%1

shift

if not "%1"=="" goto PARAMLOOP

goto BUILD

:BUILDALL
set TARGETS=all

:BUILD

set BAWTROOT=..\Bawt

set SETUPFILE=%BAWTROOT%\Setup\Tcl_MinimalDist.bawt

set FINALIZEFILE=Setup\UserFinalize.bawt

set OUTROOTDIR=C:/BawtBuilds/TclMinimal/TclMinimal-%TCLVERS%
set TOOLSDIR=C:/BawtBuildTools

set TCLKIT=%BAWTROOT%\tclkit-win32.exe

set NUMJOBS=%NUMBER_OF_PROCESSORS%

set ACTION=—-update

set BAWTOPTS=--rootdir %OUTROOTDIR% "
——toolsdir %TOOLSDIR% "
——architecture %ARCH% "
——compiler gcc+vs2019 "
——numjobs %NUMJOBS% "
—--noonline "
——nouserbuilds *
——iconfile poSoft.ico *
—-resourcefile poSoft.rc "
——certfile poSoft.cer "
——tclversion %TCLVERS% *
——copt SetupTcl "Version=%TCLSTRING%"

set FINALIZEOPT=—-logviewer

if "%FINALIZE%"=="0" goto NOFINALIZE

set FINALIZEOPT=——finalizefile %FINALIZEFILES%
:NOFINALIZE

rem Build all libraries as listed in build configuration file.
CALL %TCLKIT% %BAWTROOT%\Bawt.tcl %USEGCC% %BAWTOPTS% %FINALIZEOPT% %ACTION% %SETUPFILE%
%TARGETS%

goto EOF

:ERROR

echo.

echo Usage: %0 Architecture TclVersion TclString UseFinalizeScript [Targetl] [TargetN]
echo Architecture : x86 x6U

echo TclVersion : 8.6.12 8.6.13 8.7.a5

echo TclString : 8.6.12.0 8.6.13.0 8.7.0.5

echo UseFinalizeScript: 0 1

echo Default target : all

echo.

:EOF
BAWT User Manual Version 2.3.1, 2023-01-19 Page 49 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

You might need to adapt the pathes specified in ourrooTpIR and TOOLSDIR as well as the used
Visual Studio version specified in command line option --compiler.

Batch script UpdateTcIMinimals.bat

@echo off
setlocal

REM Architecture TclVersion TclString UseFinalizeScript

CALL UpdateTclMinimal x64 8.6.12 8.6.12.0 0
CALL UpdateTclMinimal x64 8.6.13 8.6.13.0 0
CALL UpdateTclMinimal x64 8.7.a5 8.7.0.5 0
CALL UpdateTclMinimal x86 8.6.12 8.6.12.0 0
CALL UpdateTclMinimal x86 8.6.13 8.6.13.0 0
CALL UpdateTclMinimal x86 8.7.a5 8.7.0.5 0

5.5.2 Build Tcl-Bl distributions

The following batch scripts are used to create the Tcl-Bl distributions for all supported Tcl versions. A
separate directory (C:/BawtBuilds/TclDistribution/TclDistribution-%TCLVERS%) is created for each Tcl
version containing both the x86 and x64 versions.

The needed MSYS/MInGW versions are located in directory C:/BawtBuildTools (using option --
toolsdir) to avoid extracting these for each Tcl version.

Batch script UpdateTclDistribution.bat

@echo off
setlocal

rem Architecture, TclVersion, TclString and Finalize flag are mandatory parameters

if "%1" == "" goto ERROR
if "%2" == "" goto ERROR
if "%3" == "" goto ERROR
if "sU" == "" goto ERROR
set ARCH=%1

set TCLVERS=%2
set TCLSTRING=%3
set FINALIZE=%u
shift

shift

shift

shift

rem If no target is given, use target "all".
if "%1"=="" goto BUILDALL

rem Loop through the rest of the parameter list for targets.

set TARGETS=

:PARAMLOOP

rem There is a trailing space in the next line. It's there for formatting.
set TARGETS=%TARGETS%%1

shift

if not "%1"=="" goto PARAMLOOP

goto BUILD

:BUILDALL
set TARGETS=all

:BUILD

BAWT User Manual Version 2.3.1, 2023-01-19 Page 50 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

set BAWTROOT=..\Bawt

set SETUPFILE=%BAWTROOT%\Setup\Tcl_Distribution.bawt

set FINALIZEFILE=Setup\UserFinalize.bawt

set OUTROOTDIR=C:/BawtBuilds/TclDistribution/TclDistribution-%TCLVERS%
set TOOLSDIR=C:/BawtBuildTools

set TCLKIT=%BAWTROOT%\tclkit-win32.exe

set NUMJOBS=%NUMBER_OF_PROCESSORS%

set ACTION=--update

set BAWTOPTS=--rootdir %OUTROOTDIR% "
——toolsdir %TOOLSDIR% "
——architecture %ARCH% "
——compiler gcc+vs2019 *
——numjobs %NUMJOBS% "
—--noonline "
——nouserbuilds *
——iconfile poSoft.ico "
—-resourcefile poSoft.rc "
——certfile poSoft.cer "
——tclversion %TCLVERS% "
——copt SetupTcl "Tag=-BI" "
——copt SetupTcl "Version=%TCLSTRING%"

set FINALIZEOPT=—-logviewer

if "%FINALIZE%"=="0" goto NOFINALIZE

set FINALIZEOPT=——finalizefile %FINALIZEFILE%
:NOFINALIZE

rem Build all libraries as listed in build configuration file.
CALL %TCLKIT% %BAWTROOT%\Bawt.tcl %BAWTOPTS% %FINALIZEOPT% %ACTION% %SETUPFILE%
%TARGETS%

goto EOF

:ERROR

echo.

echo Usage: %0 Architecture TclVersion TclString UseFinalizeScript [Targetl] [TargetN]
echo Architecture : x86 x64

echo TclVersion :8.6.12 8.6.13 8.7.a5

echo TclString : 8.6.12.0 8.6.13.0 8.7.0.5

echo UseFinalizeScript: 0 1

echo Default target : all

echo.

:EOF

You might need to adapt the pathes specified in ouTrooTDIR and TooLSDIR as well as the used

Visual Studio version specified in command line option --compiler.

Batch script UpdateTcIDistributions.bat

@echo off
setlocal

REM Architecture TclVersion TclString UseFinalizeScript

CALL UpdateTclDistribution x64 8.

6.12 8.6.12.0 0
CALL UpdateTclDistribution x86 8.6.12 8.6.12.0 0

CALL UpdateTclDistribution x64 8.6.13 8.6.13.0 0
CALL UpdateTclDistribution x86 8.6.13 8.6.13.0 0

CALL UpdateTclDistribution x64 8.7.a5 8.7.0.5 0

BAWT User Manual Version 2.3.1, 2023-01-19 Page 51 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

| CALL UpdateTclDistribution x86 8.7.a5 8.7.0.5 ©

BAWT User Manual

Version 2.3.1, 2023-01-19
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

Page 52 of 74

BAWT - Build Automation With Tcl

6 Logging

The Logs output directory contains the overall build log file _BawtBuild.log as well as the library specific
build log files.

Library specific log files contain the output of the configuration and compile process. They also contain
the error messages, if the build of a library does not succeed.

The overall log file contains the messages, which are printed onto standard output during the BAWT
build process. The amount of log messages can be set by specifying the log level with command line
option --1oglevel. Level O does not produce any log messages, while level 4 produces lots of log
messages. The default value for the log level is 3.

Each stage or executed command is prefixed with a time code like shown in the next line:

21:35:30 > Build tclcompiler 1.7.1 (Release)

If log files of different configurations should be compared, these time codes may be disturbing. BAWT
therefore allows to remove the time codes from the log messages by specifying command line option -

-nologtime.

When rerunning a build, existing log files are renamed by appending .bak to the corresponding files
before creating the new log files.

To view the build process online in a graphical window, the command line option --logviewer can be
specified. See the next chapter for a detailed description of the graphical log file viewer
BawtLogViewer.

Logging functionality is realized in namespace BawtLog. The most important procedure is Log, which
may be used in build scripts, too.

Command line options influencing logging:

--loglevel
--nologtime
--logviewer

6.1 Graphical Log Viewer

The BawtLogViewer is a separate program to view and analyse the log output of BAWT. It is a Tcl
script, which is wrapped as a Starpack and is included as a Windows executable in directory Bootstrap-
Windows. For other platforms it can be built with BAWT.

The graphical log viewer can either be used to analyse log files after a build process has finished (offline
mode) or it can be used to interactively view the build process (online mode). Viewing the log messages
online can be done by either using command line option --logviewer when starting the BAWT build
process or by opening the log file _BawtBuild.log anytime during the build process.

Log files can be opened by using the ri1e menu or by dragging and dropping the icon of the log file
onto the BawtLogViewer window.

The following figure shows the layout of the log viewer window, which has 2 main parts. In the upper
part all libraries of the Setup file are listed in a scrollable table, while in the lower part the log messages
of the build process are displayed in a scrollable text widget.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 53 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

file Settings Help

Setup contams 107 librares. Remaining 93 Sbvan
3| Md-‘llibmyum |Vemon |Ccm9ltv lBWbme'Eﬂ.!m Mod. time
7| — 0~ 2

‘.« 00 74 20001231 141008
vs 195 2020-12-31 1&11:43

13 TiStubs &A1 ‘VI Q.00
15 Titable m gec 033 058 2021-01-11 205801 Buwid dwectory not estent
16 Zud 12n g 015 2000-12-22 18511

Log file C:/BantBuilds/TciDistribution/TcDistsibution-8.6.11/432019/64/ L ogs/_BawtBuild.log

puild types : Helease
i > Build TkStubs 8.6.11 (Release)
L > End TkStubs 8.6,11: 0.00 minutes

> Start Tkhtml 3.0 (Library #14 of 107)
Build types : Release

> Build Tkhtml 3.0 (Release)

> End Tikhtml 3.0: 0.00 minutes

1 > Startc Tktable 2.11 (Library #1S of 107)
Build types : Release
Update cause: Build directory not existent
> Clean Tktable (Release)
DirDeletze
Dizectory: C:/BawecBuilds/TelDistribution/TelDistribution~2.6,.11/ve2019/x64/Relesse/Bulld/TkTable
irDelete
Directory: C:/BawtBuilds/TclDistribution/TclDistribution~2.6.11/vs2019/x64/Release/Install/Tktable
> Build Tktable 2.11 (Release)
DirCreate
Dizecteory: C:/BawtBuilds/TelDistributicn/TelDistribucion-2.6.11/va2019/x64/Relesse/Build/TkTable
DirCreate
Directory: C:/BawtBuilds/TclDistribution/TolDistribution-8.6.11/va2019/x64/Release/Install/Tktable
FLEE L DL RN Furvrnrrf shrave

Auto Update: ON (Library Titable g snce 0.33 mi Esty d busld time 0.58 minutes)

Different row background colors indicate the build status of a library. A green background indicates a
successful build of a library, a blue background indicates an excluded library, a yellow background
shows the library currently under build and an orange background indicates a library, where the current
build time is greater than the estimated build time. See below for an explanation of estimated build
times for deadlock detection.

A red text color is displayed for libraries which issued a warning during the build process.

The table can be sorted by any of the columns except the first one, which just shows the row number.
For example, you may want to view the libraries sorted by library names instead of the build number.
Selecting a table row scrolls to the beginning of the corresponding section in the text widget. The section
is also marked with a yellow background.

By double clicking onto a table row, a simple editor window is opened showing the contents of the
library specific build log file, see next figure for an example. Your favourite editor may be specified by
setting the environment variable EDITOR.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 54 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

File E'rt Settings
BLFcRFCR B S 8@ = D Mg v
C/BawtBuildsBawtBuilld All vs201 7/ 64 Logs/ Geographiclib log

= Start Build_GeographicLib

C:\BawtBuilds\BawtBuildAll\vs2017\x64\Release\Build\GeographicLib=CALL "C:/Program Files (x86)
/Microsoft Visual Studio/2017/Community/VC/Auxiliary/Build/vevarsall bat" xB6_amd64

** Visual Studio 2017 Developer Command Prompt v15.9.12

** Copyright (c) 2017 Microsoft Corporation

[vevarsall.bat] Environment initialized for: 'x86_x64'

-- The C compiler identification is MSVC 19.16.27031.1

-- The CXX compiler identification is MSVC 19.16.27031.1

-- Check for working C compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community/V
C/Tools/MSVC/14.16.27023/bin/Hostx86/x64/cl.exe

-- Check for working C compiler: C./Program Files (x86)/Microsoft Visual Studio/2017/Community/V
C/Tools/MSVC/14.16.27023/bin/Hostx86/x64/cl.exe -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Detecting C compile features

-- Detecting C compile features - done

-- Check for working CXX compiler: C:/Program Files (x88)/Microsoft Visual Studio/2017/Community
NC/Tools/MSVC/14.16.27023/bin/Hostx86/x64/cl.exe

-- Check for working CXX compiler: C:/Program Files (x86)/Microsoft Visual Studio/2017/Community
NCiTools/MSVC/14.16.27023/bin/Hostx86/x64/cl.exe -- works v

Pressing the right mouse button opens a context menu with the following functionalities:
e Open library specific directories in an Explorer window.
e Open library specific Log, Setup or Build file.
e Open library specific DOS or MSYS shell window.

Pressing a key while the table has focus, selects the next library, which has this key as its first letter.
Pressing other keys within the key Repeat Time extends the search string similar to the behaviour of
the Windows Explorer. The key Repeat Time can be specified in the settings menu.

Pressing the Return key selects the library currently under build.

Note the following features, which are only available in online mode:

o BawtLogViewer starts in auto Update mode, where it reloads the log file every 3 seconds.
The auto Update mode is automatically switched off when the end of the build process is
detected in the log file or it can be switched on or off by selecting the appropriate entry in the
File menu.

e When reloading the log file, the table row order is always reset to the library build order.

e The accumulated time of the library currently being built is displayed in the status bar of the
viewer window and in the corresponding table cell.

e Column Stages is not filled before the end of the build process, see next figure.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 55 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

file Settings Hep

Setup contains 107 ibraries
'I Svild-tl labmme 'Vemon |Ccm9kv laddhmel Est, time | Mod. time
g (Y] | 000 001 n i
(1§ W m-m-nm

008 2021-01-11 19:05%41

Q18 2021-01-11 19:0548

064 2020-12-31 151033

Q16 20210111 19:0%55

158 2020-12-22 201637

241 2020-12-22 201854

TJ m 2020-12-31 1511:21 |
Z021-01-11 190719 | Recursive dependency on All Clean Extract Configure Compie Distribate

Log fie C:/8awtBuilds/T ciDstrib hon-8.6.11A32019 64 oge/_BawtBuild.log
1 Txt 2.1. 00 minutes
i cawt 00 minutes
: finxgeg 00 minutes
1: gorilla minuces Exctract Coafiguse Distribute
minutes Extract Configure Discribute
minutes Extract Configure Distribute
minutes Extract Configurze Distribute
minutes Extract Coafigure Discrikute
minuces
minuces Extract Configure Distcribute
minutes Ixtract Configure Distribute
minutes Extract Configure Diacribute
minutes Extract Coafigure Distribute
minutes Extract Configure Disctribute
minutes
minuses Extract Configure Diatridute
minutes
minutes
minutes
minutes Extract Configure Distribute

{ggs;;gi

SRR AT

o B
O wo s

t imgyp2
: materialicons
: mawt
: mentry
: ooxml
7t polApps
: puppyicons
: =elaag
: tkchat
t tkaglite
: tzint
: BawtlogViewer
: Freetype
: 1libgd
: tclgd
: SetupTel

o

v O o
O O
w

2

4.
1.
0.
0.
0.
3.
1.
2.
0.
2.
i.
0.
i.
2.
2.
1.

D e S L L R B
~

OO0 00O000000D00000D0DO0O0

P T T RO O T R N TR R R SO

Total: 35.11 minuctes

Auto Update: OFF

The program can be used to detect library build deadlocks by comparing the current build time against
an estimated build time. To generate estimated build times, at least one BAWT build has to be
performed. After loading the corresponding log files, the build times of this run can be saved in the
settings file by selecting File menu entry save build times.

These build times are then used as estimated build times in future BAWT builds to compare the current
build time of a library against these estimated build times. If the current build time exceeds the estimated
time by a specific threshold value (which can be specified in the settings menu), both a visual warning
(corresponding row background is set to orange) as well as an acoustic warning (beep) is issued. The
acoustic warning can be disabled in the settings menu.

Estimated build times, deadlock parameters and other values like window size and position are stored
in the settings files ~/.BawtLogViewer/BawtLogViewer.cfg.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 56 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

7 Command Line Options

Calling the BAWT framework script with command line option --help prints the following help
message:

Usage: Bawt.tcl [Options] SetupFile LibraryName [LibraryNameN]

Start the BAWT automatic library build process.

When using "all" as library name, all libraries specified

in the setup file are built.

It is also possible to specify the numbers of the libraries as printed

by option "--1list" or specify a range of numbers (ex: 2-5).

Note, that at least either a list or build action option must be specified.

7.1 General Options

Option Description

--help Print this help message and exit.

Print BAWT version and copyright and exit.
Use in combination with --1oglevel 0 to just print the version number.

--version

--procs Print all available procedures and exit.

--proc <string> Print documentation of specified procedure and exit.

--loglevel <int> Specify log message verbosity. Choices: 0 - 4. Default: 3.

——nologtime Do not write_ time strings with _Iog messages. Default: V\/_rite time strings.
Use this option when comparing log files to have less differences.

- logviewer Start graphical log viewer program BawtLogViewer.

Only valid, if log level is greater than 1. Default: No.

7.2 List Action Options

Option Description
--list Print all available library names and versions and exit.
--platforms Print library names, versions and supported platforms.
--wincompilers Print library names, versions and supported Windows compilers.
--authors Print library names, versions and script authors.
--homepages Print library names, versions and homepages.
--dependencies Print library names, versions and dependencies.
--dependency Print dependencies of specified target libraries.

The list action options may be accumulated to print several library informations at once.

7.3 Build Action Options

Option Description

-—clean Clean library specific build and install directories.

--extract Extract library source from a ZIP file or a directory.

--configure Perform the configure stage of the build process.

--compile Perform the compile stage of the build process.

-—distribute Perform the distribution stage of the build process.

--finalize Generate environment file and call user supplied Finalize procedure.
BAWT User Manual Version 2.3.1, 2023-01-19 Page 57 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

—complete Perform the following stages in order:
clean, extract, configure, compile, distribute, finalize.
——update Perform necessary stages depending on modification times.
Note: Global stage finalize is always executed.
--simulate Simulate update action without actually building libraries.
--touch Set modification times of library build directories to current time.

7.4 Build Configuration Options

Option

Description

--architecture <string>

Build for specified processor architecture.
Choices: x86 x64.
Default: Architecture of the calling tclkit or tclsh.

--compiler <string>

Build with specified compiler version.

Choices: gcc vs2008 vs2010 vs2013 vs2015 vs2017 vs2019 vs2022.
Specify primary and secondary compiler by adding a plus sign in between.
Example: gcc+vs2013.

Default: gcc.

--gccversion <string>

Build with specified MinGW gcc version. Windows only.
Choices: 4.9.25.2.0 7.2.0 8.1.0 11.2.0.
Default: 7.2.0.

--msysversion <string>

Build with specified MSYS version. Windows only.
Choices: 1 2.
Default: Version 2 if available, otherwise version 1.

--tclversion <string>

Build Tcl, Tk and Tclkit for specified version.
Choices: 8.6.7 - 8.6.13, 8.7.a5.
Default: 8.6.13.

--tkversion <string>

Build Tk and Tclkit for specified version.
Choices: 8.6.7 - 8.6.13, 8.7.a5.
Default: 8.6.13.

--imgversion <string>

Build Img for specified version.
Choices: 1.4.91.4.101.4.111.4.131.4.141.5.0.
Default: 1.4.14.

--osgversion <string>

Build OpenSceneGraph for specified version.
Choices: 3.4.1 3.6.5.
Default: 3.6.5.

--buildtype <string>

Use specified build type.
Choices: Release Debug.
Default: Release or as specified in setup file.

--exclude <lib>

Force exclusion of build for specified library name.

--wincc <1lib> <string>

Use specified Windows compiler, if supported by build script.
Choices: gcc vs.

--sdk <lib> <string>

Use specified Microsoft SDK version.
To use the SDK version for all libraries, specify "all" as library name.

—--copt <lib> <string>

Specify library specific user configuration option.

--user <lib> <string>

Specify library specific user build file.

--url <string>

Specify BAWT download server.
Default: https://www.tcl3d.org/bawt/download

--toolsdir <string>

Specify directory containing MSYS/MinGW.
Default: [GetOutputToolsDir]

--rootdir <string>

Specify build output root directory.
Default: [GetOutputRootDir]

BAWT User Manual

Version 2.3.1, 2023-01-19 Page 58 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

--libdir <string>

Add a directory containing library source and build files.

This option can be called multiple times and adds the new directory to the
beginning of the directory list.

Default search list:

[file join [pwd] “InputLibs”]

[file join [GetlnputRootDir] “InputLibs”]

--distdir <string>

Specify distribution root directory.
Default: [file join [GetOutputTypeDir] "Distribution"]

--finalizefile <string>

Specify file with user supplied Finalize procedure.
Default: None.

--sort <string>

Sort libraries according to specified sorting mode.
Choices: dependencies dictionary none.
Default: dependencies

—--noversion

Do not use version number for Tcl package directories.
Default: Library name and version nhumber.

--noexit

Do not exit build process after fatal error, but try to continue.
Default: Exit build process after a fatal error.

--noimportlibs

Do not create import libraries on Windows.
Default: Create import libraries.
Needs VisualStudio.

--noruntimelibs

Do not copy VisualStudio runtime libraries.
Default: Copy runtime libraries.
Needs VisualStudio.

--nostrip

Do not strip libraries in distribution directory.
Default: Strip libraries.

--noonline

Do not check or download from online repository.
Default: Use https://www.tcl3d.org/bawt/download

—--norecursive

Do not check recursive dependencies.
Default: Use recursive dependencies.

—--nosubdirs

Do not create compiler and architecture sub directories.
Default: Create compiler and architecture sub directories.

—--nouserbuilds

Do not consider user build files.
Default: Consider user build files named LibraryName_User.bawt.

--iconfile <string>

Use specified icon file for tclkits and starpacks.
Default: Standard tclkit icon.
Windows only.

--resourcefile <string>

Use specified resource file for tclkits and starpacks.
Default: Standard tclkit resource file.
Windows only.

--certfile <string>

Use specified certification file for code signing starpacks.
Default: No code signing.
Windows only.

--timestampurl <string>

Use specified timestamp server for code signing starpacks.
Default: http://timestamp.comodoca.com/authenticode.
Use empty string to add no timestamp.

Windows only.

—--numjobs <int>

Number of parallel compile jobs.
Default: 1

-—-timeout <float>

Number of seconds to try renaming or deleting directories.
Default: 30.0

BAWT User Manual

Version 2.3.1, 2023-01-19 Page 59 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

8

Supported Libraries

List of all libraries (using command line option --platforms)

Version

Platforms

e}

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24 :
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41 :
42
43:
44
45:
46:
47 :
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
6l:
62:
63:

QO Joy Ul WN

apave
awthemes
BawtLogViewer
Blender
Boost
BWidget
Cal3D
Canvas3d
cawt

ccl

CERTI

cffi
cfitsio
CMake
critcl
curl
DiffUtil
DirectXTex
Doxygen
Eigen
expect
Ffidl
ffmpeg
fftw
fitsTcl
freeglut
Freetype
FTGL

gdal

gdi
GeographicLib
GeographicLibData
geos
giflib
Gl2ps

GLEW

glfw
gorilla
hdc

Img

imgjp2
imgtools
InnoSetup
iocp

itk
iwidgets
jasper
JPEG

KDIS
libffi
libgd
libressl
libwebp
libxml2
materialicons
mawt
memchan
mentry
Mpexpr
mgtt

mupdf
MuPDFWidget
nacl

o
GO RPRPENOOWSODWONDD-JINNENUUOONRE OO W:.

P ONNMNNMNWNWSMOUWERENOJWWDMARERLWARNRFRORRERWNDRE W
N .

P NRFPF WRFRFWNOONRENNWNONS_DBDRPERPONOORF ORFR WNEF OlWw

EFNNMNENMNRFREWSMNONMNOWSOD OFRFRPFPRENWREDBNDOOWNDDNJI

Ul .

N .

o
N .

Ul e

O .

OO FONNORF.. OF -

=,

o~ O .

P O OoONONREDN N

N - O OO

s N NDDND O

O |

O > W -

0 Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
11 Windows
Windows
Windows

o O

[IsN

o

Ul

[IsN

Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
.1 Windows
4 Windows
Windows
Windows
Windows
Windows
Windows
Windows
5 Windows
Windows
Windows
Windows
Windows
Windows
Windows
4 Windows
Windows
Windows
Windows
Windows
Windows
Windows

[IsN

N
€]

.1 Windows

Windows
Windows

Linux

Linux Darwin

Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux

Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux

Linux
Linux
Linux

Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux

Darwin
Darwin
Darwin

Darwin
Darwin

Darwin
Darwin
Darwin
Darwin
Darwin
Darwin

Darwin

Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin

Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin

Darwin
Darwin
Darwin

Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin

BAWT User Manual

Version 2.3.1, 2023-01-19
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

Page 60 of 74

BAWT - Build Automation With Tcl

64:
65:
66:
67:
68:
69:
70:
71:
72
73:
74 :
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94 :
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:

nsf

OglInfo

ooxml

openjpeg
OpenSceneGraph

OpenSceneGraphData

oratcl
osgcal
osgearth
parse_args
pawt
pdfdtcl
pgintcl
photoresize
pkgconfig
PNG

POApPPS
polImg
printer
puppyicons
Python

rbc
Redistributables
rl json
ruff
scrollutil
SDL
SetupOsg
SetupPython
SetupTcl
shellicon
shtmlview
Snack
sglite3
SWIG
tablelist
tbcload

Tcl
tcl3dBasic
tcl3dFull
Tcladdressbook
tclAE
Tclapplescript
tclargp
tclcompiler
tclcsv
tclfpdf
tclgd
Tclkit
tcllib
tclMubPdf
tclparser
tclpy
tclssg
TclStubs
TclTkManual
tcltls
tclvts
tclws

tclx

tdom

TIFF
tinyxml2
Tix

Tk

tkchat
tkcon

tkdnd
Tkhtml
tklib
tkpath

N DN O

O WOOMNNRPFPFOOWORFRFONODRWWNEODN

P FPFNRFPONMNNMNREOOORFE O WNRE O

0N O DNRF

OO WNNE 00O O WwwkRH -
W JO O Jboybd O OB

N IR OORFRPOONDNOUOORE WEREDNOO® oYU o) O

11,
.3.
.17
.26

O

o .

S OTWINDNNONOVOODITNDE WND O

[y

N> 0N

@

[

P WoOOoOWwWhhoNN

Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
.1 Windows
Windows

[@ N0 el 0 Ne]

=

Windows
Windows
Windows
Darwin

3
.0 Windows
4
1

2
.38 Windows
0

Windows

.2 Windows
.6.15 Windows

Windows

.7 Windows

Windows
Windows
5 Windows
0 Windows
Windows
.1 Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
3 Windows
Windows
Windows
Darwin
Darwin
Darwin
Windows

= RO
NG

~N b 01O

.3 Windows

Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows
Windows

=

=
w

N

w

P wkFk N
(@]

w

Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux

Linux
Linux
Linux

Linux

Linux

Linux
Linux
Linux
Linux
Linux

Linux

Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux

Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux

Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux
Linux

Darwin

Darwin
Darwin
Darwin
Darwin
Darwin

Darwin
Darwin
Darwin
Darwin
Darwin
Darwin

Darwin
Darwin
Darwin

Darwin

Darwin
Darwin
Darwin
Darwin
Darwin

Darwin

Darwin

Darwin
Darwin
Darwin
Darwin
Darwin

Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin

Darwin

Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin

BAWT User Manual

Version 2.3.1, 2023-01-19
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

Page 61 of 74

BAWT - Build Automation With Tcl

135: tkribbon 1.1 Windows
136: tksglite 0.5.13 Windows Linux Darwin
137: TkStubs 8.6.13 Windows
138: tksvg 0.12 Windows Linux Darwin
139: Tktable 2.11 Windows Linux Darwin
140: tkwintrack 2.0.1 Windows Linux
141: treectrl 2.4.1 Windows Linux Darwin
142: Trf 2.1.4 Windows Linux Darwin
143: trofs 0.4.9 Windows Linux Darwin
144: tserialport 1.1 Windows Linux Darwin
145: twapi 4.7.2 Windows
146: tzint 1.1 Windows Linux Darwin
147: udp 1.0.11 Windows Linux Darwin
148: ukaz 2.0a3 Windows Linux Darwin
149: vectcl 0.2 Windows Linux Darwin
150: Vim 9.0.0 Windows
151: wcb 3.8 Windows Linux Darwin
152: windetect 1.0.0 Windows Linux
153: winhelp 1.1 Windows
154: Xerces 3.2.4 Windows Linux Darwin
155: xz 5.2.7 Windows Linux Darwin
156: yasm 1.3.0 Windows
157: zZLib 1.2.13 Windows Linux Darwin
List of all libraries (using command line option --dependencies)
#: Name Version Dependencies
1: apave 3.4.8 Tk
2: awthemes 10.4.0 Tk
3: BawtLogViewer 2.3.1 Tclkit tablelist tkdnd poApps scrollutil
4: Blender 3.0.0
5: Boost 1.75.0
6: BWidget 1.9.16 Tk
7: Cal3D 0.120 CMake freeglut
8: Canvas3d 1.2.2 Tk
9: cawt 2.9.2 Tcl twapi
10: ccl 4.0.6 CMake
11: CERTI 3.5.1 CMake
12: cffi 1.2.0 Tcl libffi
13: cfitsio 4.1.0
14: CMake 3.21.4
15: critcl 3.2 Tcl
16: curl 7.70.0 libressl
17: DiffUtil 0.4.2 Tcl
18: DirectXTex 2021 11
19: Doxygen 1.8.15
20: Eigen 3.3.9
21: expect 5.45.4 Tcl
22: Ffidl 0.9.0 Tcl libffi
23: ffmpeg 4.4.1 yasm SDL
24: fftw 3.3.9
25: fitsTcl 2.5 Tcl cfitsio
26: freeglut 3.2.2 CMake
27: Freetype 2.10.4 PNG
28: FTGL 2.1.3 Freetype
29: gdal 2.4.4 openjpeg
30: gdi 0.9.9.15 Tk TkStubs
31: GeographicLib 1.52 CMake
32: GeographicLibData GeographicLib
33: geos 3.7.2 CMake
34: giflib 5.2.1
35: Gl2ps 1.4.2 CMake freeglut PNG ZLib
36: GLEW 2.2.0 CMake
37: glfw 3.3.2 CMake
38: gorilla 1.6.0 Tcl Tclkit
39: hdc 0.2.0.1 Tk TkStubs
40: Img 1.4.14 Tk TkStubs
41: imgjp2 0.1 Tk openjpeg
42: imgtools 0.3 Tcl Tk
43: InnoSetup 6.2.0
44: iocp 1.1.0 Tcl
45: itk 4.1.0 Tk

BAWT User Manual

Version 2.3.1, 2023-01-19

Page 62 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

46: iwidgets 4.1.1 Tk
47: jasper 2.0.25 CMake JPEG
48: JPEG 9.e
49: KDIS 2.9.0 CMake
50: libffi 3.4.2
51: libgd 2.3.2 ZLib TIFF JPEG PNG libwebp Freetype
52: libressl 2.9.2
53: libwebp 1.2.4
54: libxml2 2.9.14 CMake 7lib
55: materialicons 0.2 Tk tdom tksvg
56: mawt 0.4.1 Tk TkStubs SWIG CMake Img ffmpeg
57: memchan 2.3 Tcl
58: mentry 3.16 Tk wcb
59: Mpexpr 1.2 Tcl
60: mgtt 3.1 Tcl
61: mupdf 1.21.1
62: MuPDFWidget 2.2 Tk tclMuPdf
63: nacl 1.1 Tcl
64: nsf 2.4.0 Tcl
65: OglInfo 0.9.5 Tclkit tcl3dBasic
66: ooxml 1.6.1 Tcl tclvfs tdom
67: openjpeg 2.5.0 CMake
68: OpenSceneGraph 3.6.5 CMake ZLib TIFF JPEG jasper giflib PNG curl Freetype ffmpeg
69: OpenSceneGraphData 3.4.0 OpenSceneGraph
70: oratcl 4.6 Tcl
71: osgcal 0.2.1 Cal3D OpenSceneGraph
72: osgearth 2.10.1 CMake curl gdal geos OpenSceneGraph
73: parse_args 0.3.3 Tcl
74: pawt 1.1.0 Tcl fitstcl Img
75: pdfdtcl 0.9.4 Tk
76: pgintcl 3.5.1 Tcl
77: photoresize 0.2 Tcl Tk
78: pkgconfig 0.29.2
79: PNG 1.6.38 CMake ZLib
80: poApps 2.11.0 Tclkit tcllib tablelist Img tdom tclMuPdf fitsTcl polImg cawt pawt
twapi tkdnd tksvg scrollutil
81l: polmg 2.0.2 Tk
82: printer 0.9.6.15 Tk TkStubs
83: puppyicons 0.1 Tk tksvg
84: Python 3.7.7
85: rbc 0.2 Tk
86: Redistributables
87: rl json 0.11.5 Tcl
88: ruff 2.3.0 Tcl
89: scrollutil 1.17 Tk
90: SDL 2.26.1 CMake
91: SetupOsg All
92: SetupPython Python
93: SetupTcl All
94: shellicon 0.1 Tk TkStubs
95: shtmlview 1.0.0 Tk
96: Snack 2.2.11 Tk TkStubs
97: sglite3 3.39.4
98: SWIG 4.1.1
99: tablelist 6.20 Tk
100: tbcload 1.7.1 Tcl
101: Tcl 8.6.13
102: tcl3dBasic 0.9.5 CMake Tk TkStubs SWIG
103: tcl3dFull 0.9.5 CMake Tk TkStubs SWIG Freetype FTGL SDL OpenSceneGraph
104: Tcladdressbook 1.2.4 Tcl
105: tclAE 2.0.7 Tcl
106: Tclapplescript 2.2 Tcl
107: tclargp 0.2 Tcl
108: tclcompiler 1.7.3 Tcl
109: tclcsv 2.3 Tcl
110: tclfpdf 1.5 Tk
111: tclgd 1.4 Tcl libgd
112: Tclkit Tcl Tk
113: tcllib 1.21 Tcl critcl
114: tclMuPdf 2.1.1 Tk TkStubs mupdf
115: tclparser 1.8 Tcl
116: tclpy 0.4 Tk TkStubs Python
117: tclssg 2.2.1 Tcl Tclkit tcllib
118: TclStubs 8.6.13
119: TclTkManual Tcl Tk
120: tcltls 1.7.22 Tcl libressl
121: tclvfs 1.4.2 Tcl
122: tclws 3.4.0 Tcl tdom tcllib
123: tclx 8.4.4 Tcl
124: tdom 0.9.3 Tcl

BAWT User Manual

Version 2.3.1, 2023-01-19
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

Page 63 of 74

BAWT - Build Automation With Tcl

125: TIFF 4.4.0 JPEG ZLib xz

126: tinyxml2 8.0.0 CMake

127: Tix 8.4.3 Tk

128: Tk 8.6.13 Tcl

129: tkchat 1.482 Tclkit

130: tkcon 2.7.10 Tk

131: tkdnd 2.9.3 CMake Tk TkStubs

132: Tkhtml 3.0.1 Tcl Tk

133: tklib 0.7 Tk

134: tkpath 0.3.3 Tk

135: tkribbon 1.1 Tk TkStubs

136: tksqglite 0.5.13 Tcl Tclkit tablelist Tktable treectrl Img

137: TkStubs 8.6.13 TclStubs

138: tksvg 0.12 Tk

139: Tktable 2.11 Tk

140: tkwintrack 2.0.1 Tk

141: treectrl 2.4.1 Tk

142: Trf 2.1.4 Tcl Zlib

143: trofs 0.4.9 Tk

144: tserialport 1.1 Tcl

145: twapi 4.7.2 Tcl

146: tzint 1.1 Tcl PNG

147: udp 1.0.11 Tcl

148: ukaz 2.0a3 Tk

149: vectcl 0.2 Tcl

150: Vim 9.0.0

151: wcb 3.8 Tk

152: windetect 1.0.0 Tk

153: winhelp 1.1 Tcl Tk

154: Xerces 3.2.4 CMake

155: xz 5.2.7

156: yasm 1.3.0

157: zZLib 1.2.13

List of all libraries (using command line option --authors)

#: Name Version ScriptAuthor
1: apave 3.4.8 Paul Obermeier
2: awthemes 10.4.0 Paul Obermeier
3: BawtLogViewer 2.3.1 Paul Obermeier
4: Blender 3.0.0 Paul Obermeier
5: Boost 1.75.0 Paul Obermeier
6: BWidget 1.9.16 Paul Obermeier
7: Cal3D 0.120 Paul Obermeier
8: Canvas3d 1.2.2 Paul Obermeier
9: cawt 2.9.2 Paul Obermeier

10: ccl 4.0.6 Paul Obermeier

11: CERTI 3.5.1 Paul Obermeier

12: cffi 1.2.0 Paul Obermeier

13: cfitsio 4.1.0 Paul Obermeier

14: CMake 3.21.4 Paul Obermeier

15: critcl 3.2 Paul Obermeier

16: curl 7.70.0 Paul Obermeier

17: Diffutil 0.4.2 Paul Obermeier

18: DirectXTex 2021 11 Paul Obermeier

19: Doxygen 1.8.15 Paul Obermeier

20: Eigen 3.3.9 Paul Obermeier

21: expect 5.45.4 Paul Obermeier

22: Ffidl 0.9.0 Paul Obermeier

23: ffmpeg 4.4.1 Paul Obermeier

24: fftw 3.3.9 Paul Obermeier

25: fitsTcl 2.5 Paul Obermeier

26: freeglut 3.2.2 Paul Obermeier

27: Freetype 2.10.4 Paul Obermeier

28: FTGL 2.1.3 Paul Obermeier

29: gdal 2.4.4 Paul Obermeier

30: gdi 0.9.9.15 Paul Obermeier

31: GeographicLib 1.52 Paul Obermeier

32: GeographicLibData Paul Obermeier

33: geos 3.7.2 Paul Obermeier

34: giflib 5.2.1 Paul Obermeier

BAWT User Manual

Version 2.3.1, 2023-01-19
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

Page 64 of 74

BAWT - Build Automation With Tcl

35: Gl2ps 2 Paul Obermeier
36: GLEW 0 Paul Obermeier
37: glfw 2 Paul Obermeier
38: gorilla 0 Paul Obermeier
39: hdc 0.1 Paul Obermeier
40: Img 14 Paul Obermeier
41: imgjp2 Paul Obermeier

42: imgtools Paul Obermeier

43: InnoSetup 0 Paul Obermeier
44: iocp 0 Paul Obermeier
45: itk 0 Paul Obermeier
46: iwidgets 1 Paul Obermeier
47: jasper 25 Paul Obermeier
48: JPEG Paul Obermeier
49: KDIS 0 Paul Obermeier
50: 1libffi 2 Paul Obermeier
51: libgd 2 Alexander Schoepe
52: libressl 2 Paul Obermeier
53: libwebp 4 Paul Obermeier
54: libxml2 14 Paul Obermeier
55: materialicons Paul Obermeier
56: mawt .1 Paul Obermeier
57: memchan Alexander Schoepe
58: mentry 6 Paul Obermeier
59: Mpexpr Paul Obermeier
60: mgtt Paul Obermeier
61: mupdf 1.1 Paul Obermeier
62: MuPDFWidget Paul Obermeier
63: nacl Paul Obermeier
64: nsf 0 Paul Obermeier
65: OglInfo 5 Paul Obermeier
66: ooxml 1 Paul Obermeier
67: openijpeg 0 Paul Obermeier
68: OpenSceneGraph 5 Paul Obermeier
69: OpenSceneGraphData 0 Paul Obermeier
70: oratcl Alexander Schoepe
71: osgcal 1 Paul Obermeier

72: osgearth 0.1 Paul Obermeier

73: parse_args 3 Paul Obermeier
74: pawt 0 Paul Obermeier
75: pdfdtcl 4 Paul Obermeier
76: pgintcl 1 Paul Obermeier
77: photoresize Paul Obermeier
78: pkgconfig 9.2 Paul Obermeier
79: PNG .38 Paul Obermeier
80: poApps 1.0 Paul Obermeier
8l: polmg .2 Paul Obermeier

.6.15 Paul Obermeier
Paul Obermeier

82: printer
83: puppyicons

O WOONNRFOOWORFRFONOP® WWNRFRPRONREFEFDNRPFEFEWRF WNOOMNENNWNOND® SR ONONOORF ORF WN -
NP OORFRONNUOORFRFWRERNMNOPROODUODDERPNDNNENMNRERWANONMOWDD OD OFRPREREPNWRE BN WDND

84: Python .7 Paul Obermeier
85: rbc Alexander Schoepe
86: Redistributables Paul Obermeier
87: rl json 0.11.5 Paul Obermeier
88: ruff 2.3.0 Paul Obermeier
89: scrollutil 1.17 Paul Obermeier
90: SDL 2.26.1 Paul Obermeier
91: SetupOsg Paul Obermeier
92: SetupPython Paul Obermeier
93: SetupTcl Paul Obermeier
94: shellicon 0.1 Paul Obermeier
95: shtmlview 1.0.0 Paul Obermeier
96: Snack 2.2.11 Paul Obermeier
97: sglite3 3.39.4 Paul Obermeier
98: SWIG 4.1.1 Paul Obermeier
99: tablelist 6.20 Paul Obermeier
100: tbcload 1.7.1 Alexander Schoepe
101: Tcl 8.6.13 Paul Obermeier
102: tcl3dBasic 0.9.5 Paul Obermeier
103: tcl3dFull 0.9.5 Paul Obermeier
104: Tcladdressbook 1.2.4 Alexander Schoepe
105: tclAE 2.0.7 Alexander Schoepe
BAWT User Manual Version 2.3.1, 2023-01-19 Page 65 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

106: Tclapplescript
107: tclargp

108: tclcompiler
109: tclcsv

Alexander Schoepe
Paul Obermeier
.3 Alexander Schoepe
Paul Obermeier
110: tclfpdf Paul Obermeier
111: tclgd Alexander Schoepe
112: Tclkit Paul Obermeier

RPN ON
SO TN N

113: tcllib 1.21 Paul Obermeier
114: tclMuPdf 2.1.1 Paul Obermeier
115: tclparser 1.8 Alexander Schoepe
116: tclpy 0.4 Paul Obermeier
117: tclssg 2.2.1 Paul Obermeier
118: TclStubs 8.6.13 Paul Obermeier

119: TclTkManual Paul Obermeier

120: tcltls 1.7.22 Alexander Schoepe
121: tclvfs 1.4.2 Paul Obermeier
122: tclws 3.4.0 Paul Obermeier
123: tclx 8.4.4 Paul Obermeier
124: tdom 0.9.3 Paul Obermeier
125: TIFF 4.4.0 Paul Obermeier
126: tinyxml2 8.0.0 Paul Obermeier
127: Tix 8.4.3 Paul Obermeier
128: Tk 8.6.13 Paul Obermeier
129: tkchat 1.482 Paul Obermeier
130: tkcon 2.7.10 Paul Obermeier
131: tkdnd 2.9.3 Paul Obermeier
132: Tkhtml 3.0.1 Paul Obermeier
133: tklib 0.7 Paul Obermeier
134: tkpath 0.3.3 Paul Obermeier
135: tkribbon 1.1 Paul Obermeier
136: tksglite 0.5.13 Paul Obermeier
137: TkStubs 8.6.13 Paul Obermeier
138: tksvg 0.12 Paul Obermeier
139: Tktable 2.11 Paul Obermeier
140: tkwintrack 2.0.1 Paul Obermeier
141: treectrl 2.4.1 Paul Obermeier
142: Trf 2.1.4 Paul Obermeier
143: trofs 0.4.9 Paul Obermeier
144: tserialport 1.1 Alexander Schoepe
145: twapi 4.7.2 Paul Obermeier
146: tzint 1.1 Alexander Schoepe
147: udp 1.0.11 Paul Obermeier
148: ukaz 2.0a3 Paul Obermeier
149: vectcl 0.2 Paul Obermeier
150: Vim 9.0.0 Paul Obermeier
151: wcb 3.8 Paul Obermeier
152: windetect 1.0.0 Paul Obermeier
153: winhelp 1.1 Paul Obermeier
154: Xerces 3.2.4 Paul Obermeier
155: xz 5.2.7 Paul Obermeier
156: yasm 1.3.0 Paul Obermeier
157: ZLib 1.2.13 Paul Obermeier
List of all libraries (using command line option --homepages)
#: Name Version Homepage
1: apave 3.4.8 https://aplsimple.github.io/en/tcl/pave/index.html
2: awthemes 10.4.0 https://sourceforge.net/projects/tcl-awthemes/
3: BawtLogViewer 2.3.1 http://www.bawt.tcl3d.org
4: Blender 3.0.0 https://www.blender.org/
5: Boost 1.75.0 https://www.boost.org/
6: BWidget 1.9.16 https://core.tcl-lang.org/bwidget/
7: Cal3D 0.120 https://github.com/mp3butcher/Cal3D
8: Canvas3d 1.2.2 http://3dcanvas.tcl-lang.org/
9: cawt 2.9.2 http://www.cawt.tcl3d.org/
10: ccl 4.0.6 https://sourceforge.net/projects/cigi/
11: CERTI 3.5.1 https://savannah.nongnu.org/projects/certi/
12: cffi 1.2.0 https://github.com/apnadkarni/tcl-cffi
BAWT User Manual Version 2.3.1, 2023-01-19 Page 66 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

13: cfitsio

14: CMake

15: critcl

16: curl

17: Diffutil

18: DirectXTex

19: Doxygen

20: Eigen

21: expect

22: Ffidl

23: ffmpeg

24: fftw

25: fitsTcl
https://heasarc.gsfc.nas

26: freeglut

27: Freetype

28: FTGL

29: gdal

30: gdi

31: GeographicLib

32: GeographicLibData

33: geos

34: giflib

35: Gl2ps

36: GLEW

37: glfw

38: gorilla

39: hdc

40: Img

41: imgjp2

42: imgtools

43: InnoSetup

44: iocp

45: itk

46: iwidgets

47: jasper

48: JPEG

49: KDIS

50: libffi

51: libgd

52: libressl

53: libwebp

54: libxml2

55: materialicons

56: mawt

57: memchan

58: mentry

59: Mpexpr

60: mgtt

61: mupdf

62: MuPDFWidget

63: nacl

64: nsf

65: OglInfo

66: ooxml

67: openijpeg

68: OpenSceneGraph

69: OpenSceneGraphData

70: oratcl

71: osgcal

72: osgearth

73: parse_args

74: pawt

75: pdfdtcl

76: pgintcl

77: photoresize

78: pkgconfig

79: PNG

80: poApps

81l: poImg

82: printer

83: puppyicons

84: Python

85: rbc

86: Redistributables

87: rl json

88: ruff

89: scrollutil

90: SDL

91: SetupOsg

HFOMNNMNDNDNWYNWDNOOU WEREDNOJWW

O WOONNREFEFOOWORONODDWWNRONRENRWRFWNOONEFNNWNONDDDMDMFEODOOOR, O WNEFE OLWw

N RN O

OO SRR RPRPNDQ WD O W o

N -

NP OORFRFROONNUORFRFWRNODPPOANTUNODDRENNMENRWANONOWDOD OFRFRFEFRPNWEDBNDOO WN NI

.1.0

21.4

70.0
4.2

021 11

ol .
o =
£~y o

O~ O -

v
.2
.4

o

HOoONONREDN O > W

N OO o

s DNDNN O

o U1 o U O

=
(6]

https:
https:
https:
https:

//heasarc.gsfc.nasa.gov/fitsio/
//www.cmake.org/
//andreas-kupries.github.io/critcl/
//curl.haxx.se/libcurl/
https://github.com/pspjuth/DiffUtilTcl/
https://github.com/microsoft/DirectXTex/
http://www.doxygen.org/
http://eigen.tuxfamily.org/
https://sourceforge.net/projects/expect/
https://github.com/prs-de/ffidl
https://www.ffmpeg.org/
http://www.fftw.org/

ov/docs/software/ftools/fv/fitsTcl home.html

https://sourceforge.net/projects/freeglut/
http://www.freetype.org/
https://sourceforge.net/projects/ftgl/
https://www.gdal.org/
http://www.schwartzcomputer.com/tcl-tk/tcl-tk.html
https://geographiclib.sourceforge.io/
https://geographiclib.sourceforge.io/
http://trac.osgeo.org/geos/
http://giflib.sourceforge.net/
http://www.geuz.org/gl2ps/
https://github.com/nigels-com/glew/
https://www.glfw.org/
https://github.com/zdia/gorilla/wiki
http://www.schwartzcomputer.com/tcl-tk/tcl-tk.html
https://sourceforge.net/projects/tkimg/
https://www.androwish.org/home/dir?name=jni/imgjp2
http://tkimgtools.sourceforge.net/
http://www.jrsoftware.org/isinfo.php
https://github.com/apnadkarni/iocp/
https://sourceforge.net/projects/incrtcl/
https://sourceforge.net/projects/incrtcl/
https://github.com/jasper-software/jasper/
http://www.ijg.org/
https://sourceforge.net/projects/kdis/
https://github.com/libffi/libffi
https://libgd.github.io

https://www.libressl.org/
https://developers.google.com/speed/webp/
https://gitlab.gnome.org/GNOME/1libxml2
https://www.androwish.org/
http://www.mawt.tcl3d.org/
http://memchan.sourceforge.net/
http://www.nemethi.de/
https://sourceforge.net/projects/mpexpr/
https://chiselapp.com/user/schelte/repository/mgtt/home
https://mupdf.com/
https://sourceforge.net/projects/irrational-numbers/
https://tcl.sowaswie.de/repos/fossil/nacl/home
https://next-scripting.org

http://www.tcl3d.org/
https://tcl.sowaswie.de/repos/fossil/ooxml/home
http://www.openjpeg.org/
http://www.openscenegraph.org/
http://www.openscenegraph.org/
http://oratcl.sourceforge.net
https://sourceforge.net/projects/osgcal/
http://osgearth.org/
https://github.com/RubylLane/parse args
http://www.pawt.tcl3d.org/
https://sourceforge.net/projects/pdfdtcl/
https://sourceforge.net/projects/pgintcl/
https://github.com/auriocus/PhotoResize
https://www.freedesktop.org/wiki/Software/pkg-config/
http://www.libpng.org/pub/png/
http://www.poSoft.de/html/poTools.html
http://www.poSoft.de/
http://www.schwartzcomputer.com/tcl-tk/tcl-tk.html
https://www.androwish.org/

http://www.python.org/
http://www.sourceforge.net/projects/rbctoolkit/
https://support.microsoft.com/en-us/kb/2977003
https://github.com/RubyLane/rl json
https://ruff.magicsplat.com/
http://www.nemethi.de/

https://www.libsdl.org/

http://www.bawt.tcl3d.org/

BAWT User Manual

Version 2.3.1, 2023-01-19 Page 67 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

92:
93:
94 :
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:

SetupPython
SetupTcl
shellicon
shtmlview
Snack
sglite3
SWIG
tablelist
tbcload
Tcl
tcl3dBasic
tcl3dFull
Tcladdressbook
tclAE
Tclapplescript
tclargp
tclcompiler
tclcsv
tclfpdf
tclgd
Tclkit
tcllib
tclMuPdf
tclparser
tclpy
tclssg
TclStubs
TclTkManual
tcltls
tclvEs
tclws

tclx

tdom

TIFF
tinyxml2
Tix

Tk

tkchat
tkcon
tkdnd
Tkhtml
tklib
tkpath
tkribbon
tksqglite
TkStubs
tksvg
Tktable
tkwintrack
treectrl
Trf

trofs
tserialport
twapi
tzint

udp

ukaz
vectcl

Vim

wcb
windetect
winhelp
Xerces

XZ

yasm

ZLib

o- ©-
[SRNONS, ING, Y S = . O
Ny

HFRERPNMNEFRFONMNNMNREOOOREOO®WNRE O
SO W -INDNONOVOYTINNE WND O

-
-

0N O N
N 0N
= e

w

H WoOoOoOwdhdhoNN
N

[ee)
= wkPE N
o w

.13
.13

NWNMNNHFOPMONOOR IR BRBOREAURF W10 WJB 0D O OB i b
© e

PR OOWRREFWOONREFREREDBAREPONNNMNNOODORE OO WNDNHE 0OWO®™OOWWRH

R O J .

http://www.bawt.tcl3d.org/
http://www.bawt.tcl3d.org/
http://wiki.tcl-lang.org/17859
https://github.com/mittelmark/shtmlview/
https://github.com/scottypitcher/tcl-snack
https://www.sqglite.org/

http://www.swig.org/

http://www.nemethi.de/
https://github.com/ActiveState/teapot/tree/master/lib/tbcload
http://www.tcl-lang.org/

http://www.tcl3d.org/

http://www.tcl3d.org/
https://sourceforge.net/projects/tcladdressbook/
https://sourceforge.net/projects/tclae/
https://sourceforge.net/projects/tclapplescript/
http://www.chevreux.org/projects_tcl.html
https://github.com/ActiveState/teapot/tree/master/lib/tclcompiler
https://sourceforge.net/projects/tclcsv
https://github.com/lamuzzachiodi/tclfpdf
https://github.com/flightaware/tcl.gd
https://sourceforge.net/projects/kbskit/
https://core.tcl-lang.org/tcllib
https://sourceforge.net/projects/irrational-numbers/
https://github.com/flightaware/TclProDebug/tree/master/lib/tclparser
https://github.com/aidanhs/libtclpy
https://github.com/tclssg/tclssg
http://www.tcl-lang.org/

http://www.tcl-lang.org
http://core.tcl-lang.org/tcltls/
https://sourceforge.net/projects/tclvis/
https://core.tcl-lang.org/tclws/
https://github.com/flightaware/tclx/
http://tdom.org/
http://www.simplesystems.org/libtiff/
https://github.com/leethomason/tinyxml2
http://tix.sourceforge.net/
http://www.tcl-lang.org/
http://tkchat.tcl-lang.org/
https://github.com/wjoye/tkcon/
https://github.com/petasis/tkdnd
http://tkhtml.tcl.tk/index.html
https://core.tcl-lang.org/tklib
http://chiselapp.com/user/rene/repository/tkpath/
https://github.com/petasis/tkribbon
http://reddog.s35.xrea.com/wiki/TkSQLite.html
http://www.tcl-lang.org/
https://github.com/oehhar/tksvg/
http://tktable.sourceforge.net/
https://sourceforge.net/projects/tkwintrack/
https://sourceforge.net/projects/tktreectrl/
http://tcltrf.sourceforge.net/
https://math.nist.gov/~DPorter/tcltk/trofs/
https://tcl.sowaswie.de/repos/fossil/tserialport/home
https://twapi.magicsplat.com/
https://tcl.sowaswie.de/repos/fossil/tzint/home
https://sourceforge.net/projects/tcludp/
https://github.com/auriocus/ukaz
http://auriocus.github.io/VecTcl/
https://www.vim.org/

http://www.nemethi.de/
https://sourceforge.net/projects/tkwintrack/
https://www.androwish.org/index.html/dir?name=undroid/winhelp
http://xerces.apache.org/
https://sourceforge.net/projects/lzmautils/
https://yasm.tortall.net/

http://www.zlib.net/

BAWT User Manual

Version 2.3.1, 2023-01-19

Page 68 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

BAWT - Build Automation With Tcl

9 MSYS / MinGW Information

This chapter describes the development environments MSYS and MinGW. These packages provide an
environment using the GNU compiler collection (gcc) to build typical Open Source projects like Tcl/Tk
under Windows.

9.1 Introduction

9.1.1 MSYS
Short description from the homepage of MSYS: http://www.mingw.org/

MSYS, a contraction of "Minimal SYStem", is a Bourne Shell command line interpreter system. Offered
as an alternative to Microsoft's cmd.exe, this provides a general purpose command line environment,
which is particularly suited to use with MinGW, for porting of many Open Source applications to the MS-
Windows platform.

MSYS is a collection of Unix tools for Windows. It contains all tools which are needed for the typical
build process using the configure / make toolset.

Exanuﬂes autogen, cp, rm, mv, mkdir, m4, make

MSYS is available as 32-bit version only. This version can be used in conjunction with both the 32-bit
and 64-bit version of MinGW.

9.1.2 MSYS2

MSYS2 is a newer version of MSYS. It is available from https://www.msys2.org/.
Download the newest 32-bit installer and execute it. After installation perform the following commands
to update the packages and add additional packages needed for BAWT.

e Start the MSYS2 shell and execute command:

‘ > pacman -Syu

Close the MSYS2 shell by closing the window.
Start the MSYS2 shell again and perform the following commands:

pacman -Su
pacman -S make
pacman -S autoconf

vV V V V

pacman -S pkg-config

9.1.3 MinGW

Short description from the homepage of MinGW-w64: http://sourceforge.net/projects/mingw-w64/

MinGW, a contraction of "Minimalist GNU for Windows", is a minimalist development environment for
native Microsoft Windows applications.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 69 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

http://www.mingw.org/
https://www.msys2.org/
http://sourceforge.net/projects/mingw-w64

BAWT - Build Automation With Tcl

MinGW provides a complete Open Source programming tool set which is suitable for the development
of native MS-Windows applications, and which do not depend on any 3rd-party C-Runtime DLLs. (It
does depend on a number of DLLs provided by Microsoft themselves, as components of the operating
system; most notable among these is MSVCRT.DLL, the Microsoft C runtime library. Additionally,
threaded applications must ship with a freely distributable thread support DLL, provided as part of
MinGW itself).

MinGW compilers provide access to the functionality of the Microsoft C runtime and some language-
specific runtimes. MinGW, being Minimalist, does not, and never will, attempt to provide a POSIX
runtime environment for POSIX application deployment on MS-Windows.

MinGW provides the GNU Compiler Collection gcc for Windows. The SourceForge project MinGW-w64
supplies 32-bit and 64-bit versions of gcc.

The MinGW-w64 project also supplies an extended version of MSYS (see chapter 9.2 Installation below
for details).

9.2 Installation

9.2.1 Download MSYS

Entry page:
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages/

File: msys+7za+wget+svn+git+mercurial+cvs-rev13.7z

Link:
http://sourceforge.net/projects/mingwbuilds/files/external-binary-
packages/msys%2B7za%2Bwqget%2Bsvn%2Bqgit%2Bmercurial%2Bcvs-rev13.7z/download

9.2.2 Download MinGW

Entry page for 32-bit version:
http://sourceforge.net/projects/mingw-
wb4/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/

Entry page for 64-bit version:
http://sourceforge.net/projects/mingw-
wo64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/

32-bit gcc 4.9.2
File: i686-4.9.2-release-posix-dwarf-rt_v4-rev4.7z

Link:

http://sourceforge.net/projects/mingw-
wo64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/4.9.2/threads-
posix/dwarf/i686-4.9.2-release-posix-dwarf-rt v4-rev4.7z/download

32-bit gcc 5.2.0
File: i686-5.2.0-release-posix-dwarf-rt_v4-rev0.7z

BAWT User Manual Version 2.3.1, 2023-01-19 Page 70 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages/
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages/msys%2B7za%2Bwget%2Bsvn%2Bgit%2Bmercurial%2Bcvs-rev13.7z/download
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages/msys%2B7za%2Bwget%2Bsvn%2Bgit%2Bmercurial%2Bcvs-rev13.7z/download
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/4.9.2/threads-posix/dwarf/i686-4.9.2-release-posix-dwarf-rt_v4-rev4.7z/download
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/4.9.2/threads-posix/dwarf/i686-4.9.2-release-posix-dwarf-rt_v4-rev4.7z/download
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/4.9.2/threads-posix/dwarf/i686-4.9.2-release-posix-dwarf-rt_v4-rev4.7z/download

BAWT - Build Automation With Tcl

Link:

http://sourceforge.net/projects/mingw-
wo64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/5.2.0/threads-
posix/dwarf/i686-5.2.0-release-posix-dwarf-rt v4-rev0.7z/download

32-bit gcc 7.2.0
File: i686-7.2.0-release-posix-dwarf-rt_v5-revl.7z

Link:

https://sourceforge.net/projects/mingw-
wb4/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/7.2.0/threads-
posix/dwarf/i686-7.2.0-release-posix-dwarf-rt v5-revl.7z/download

32-bit gcc 8.1.0
File: i686-8.1.0-release-posix-dwarf-rt_v6-rev0.7z

Link:

https://sourceforge.net/projects/mingw-
wo64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/8.1.0/threads-
posix/dwarf/i686-8.1.0-release-posix-dwarf-rt v6-rev0.7z/download

64-bit gcc 4.9.2
File: x86_64-4.9.2-release-posix-seh-rt_v4-rev4.7z

Link:

http://sourceforge.net/projects/mingw-
wb4/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/4.9.2/threads-
posix/seh/x86 64-4.9.2-release-posix-seh-rt v4-rev4.7z/download

64-bit gcc 5.2.0
File: x86_64-5.2.0-release-posix-seh-rt_v4-rev0.7z

Link:

http://sourceforge.net/projects/mingw-
wo64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/5.2.0/threads-
posix/seh/x86 64-5.2.0-release-posix-seh-rt v4-rev0.7z/download

64-bit gcc 7.2.0
File: x86_64-7.2.0-release-posix-seh-rt_v5-revl1.7z

Link:

https://sourceforge.net/projects/mingw-
wo64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.2.0/threads-
posix/seh/x86 64-7.2.0-release-posix-seh-rt v5-revl.7z/download

64-bit gcc 8.1.0
File: x86_64-8.1.0-release-posix-seh-rt_v6-rev0.7z

Link:

https://sourceforge.net/projects/mingw-
wo64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/8.1.0/threads-
posix/seh/x86 64-8.1.0-release-posix-seh-rt v6-rev0.7z/download

BAWT User Manual Version 2.3.1, 2023-01-19 Page 71 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/5.2.0/threads-posix/dwarf/i686-5.2.0-release-posix-dwarf-rt_v4-rev0.7z/download
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/5.2.0/threads-posix/dwarf/i686-5.2.0-release-posix-dwarf-rt_v4-rev0.7z/download
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/5.2.0/threads-posix/dwarf/i686-5.2.0-release-posix-dwarf-rt_v4-rev0.7z/download
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/7.2.0/threads-posix/dwarf/i686-7.2.0-release-posix-dwarf-rt_v5-rev1.7z/download
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/7.2.0/threads-posix/dwarf/i686-7.2.0-release-posix-dwarf-rt_v5-rev1.7z/download
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/7.2.0/threads-posix/dwarf/i686-7.2.0-release-posix-dwarf-rt_v5-rev1.7z/download
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/8.1.0/threads-posix/dwarf/i686-8.1.0-release-posix-dwarf-rt_v6-rev0.7z/download
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/8.1.0/threads-posix/dwarf/i686-8.1.0-release-posix-dwarf-rt_v6-rev0.7z/download
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/8.1.0/threads-posix/dwarf/i686-8.1.0-release-posix-dwarf-rt_v6-rev0.7z/download
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/4.9.2/threads-posix/seh/x86_64-4.9.2-release-posix-seh-rt_v4-rev4.7z/download
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/4.9.2/threads-posix/seh/x86_64-4.9.2-release-posix-seh-rt_v4-rev4.7z/download
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/4.9.2/threads-posix/seh/x86_64-4.9.2-release-posix-seh-rt_v4-rev4.7z/download
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/5.2.0/threads-posix/seh/x86_64-5.2.0-release-posix-seh-rt_v4-rev0.7z/download
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/5.2.0/threads-posix/seh/x86_64-5.2.0-release-posix-seh-rt_v4-rev0.7z/download
http://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/5.2.0/threads-posix/seh/x86_64-5.2.0-release-posix-seh-rt_v4-rev0.7z/download
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.2.0/threads-posix/seh/x86_64-7.2.0-release-posix-seh-rt_v5-rev1.7z/download
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.2.0/threads-posix/seh/x86_64-7.2.0-release-posix-seh-rt_v5-rev1.7z/download
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.2.0/threads-posix/seh/x86_64-7.2.0-release-posix-seh-rt_v5-rev1.7z/download
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/8.1.0/threads-posix/seh/x86_64-8.1.0-release-posix-seh-rt_v6-rev0.7z/download
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/8.1.0/threads-posix/seh/x86_64-8.1.0-release-posix-seh-rt_v6-rev0.7z/download
https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/8.1.0/threads-posix/seh/x86_64-8.1.0-release-posix-seh-rt_v6-rev0.7z/download

BAWT - Build Automation With Tcl

9.2.3 Extract

The following instructions use the 32-bit version of gcc 4.9.2. Installation is done on drive C:
Adapt file and directory names accordingly, when using other versions.

e Create directory C:\MinGW-gcc4.9.2-32
o Extract downloaded MinGW file in directory c:\MinGW-gcc4.9.2-32
o Extract downloaded MSYS file in directory c:\MinGW-gcc4.9.2-32

Your directory structure should now look as follows:

;v DieserPC » O5(C) » MinGW-geed8.2-32 »

-~

(] Mame Anderungsdatum Typ
, mingw32 06.11.2015 16:49 Dateiordner
| Msys 06.11.2015 17:00 Dateiordner

9.2.4 Configuration

Insert the next two lines into file c: \MinGW-gcc4.9.2-32\msys\etc\fstab

Win32 Path Mount Point
C:/MinGW-gcc4.9.2-32/mingw32 /mingw
9.25 Test

Start the MSYS Shell by double-clicking onto file c:\MinGW-gcc4.9.2-32\msys\msys.bat
You may create a shortcut of msys.bat on your desktop for easier access.

9.3 Further Informations

Source: http://sourceforge.net/p/mingw-w64/wiki2/MSYS/

9.3.1 Whatis MSYS

MSYS is a Minimal SYStem, providing several crucial unix utilities under a compatibility layer (the msys-
1.0.dll file). MSYS should provide everything to make compilation of common GNU software. An
outdated description by the makers themselves.

MSYS provided by the mingw-w64/w32 project

This package is not more than a collection of the 50+ packages provided by mingw.org. It was created
as a (huge) convenience to our users, to let them be productive instead of downloading every part
seperately. The accompanying sources are also provided and can be found in the same download
section as mentioned above.

This package is 32-bit, but will run flawlessly on x64 Windows. There will never be a 64-bit native MSYS
(is there any need?) because the only compiler capable of building MSYS applications is the outdated
gcc 3.4.4, which does not support x64 native Windows targets.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 72 of 74
Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

http://sourceforge.net/p/mingw-w64/wiki2/MSYS/
http://mingw.org/wiki/MSYS

9.3.2

BAWT - Build Automation With Tcl

Where to get MSYS

There are three places you can get MSYS:

9.3.3

The MinGW project, with separate packages of all official MSYS packages. Takes a long time
to download and install everything.

The all-in-one package on the MinGW-w64 download page. It is updated on request (see third
option for very up to date collection)

MinGW-builds provides an ultra-inclusive MSYS package with a bunch of additional useful
stuff.

How to use MSYS

Installing MSYS is quite easy.

You'll need to download the above package.

Unzip it somewhere, for example C:\msys so that C:\msys\bin contains (among others)
bash.exe.

Doubleclick (or make a handy shortcut and run that) on C:\msys\msys.bat.

Type sh /postinstall/pi.sh

Answer the friendly questions and you're all set up.

Mingw-w64/w32 specifics

When running an autotools configure script, these options will come in handy:

for a 64-bit build: --host=x86_64-w64-mingw32

for a 32-bit build: --host=i686-w64-mingw32

If you are experiencing problems, you can also set --build to the same value. Some configure scripts
also use --target instead of --host. Use configure --help to get all possible options.

--host, --target, and --build explained

--host specifies on what platform/architecture the compiled program is going to run. --target specifies
the platform/architecture that the program should be configured for and will be compiled for. This should
only have effect when building cross-compilers. --build specifies the platform/architecture the build
process is going to be executed.

BAWT User Manual Version 2.3.1, 2023-01-19 Page 73 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

https://sourceforge.net/projects/mingw/files/MSYS/
http://sourceforge.net/projects/mingw-w64/files/External%20binary%20packages%20%28Win64%20hosted%29/MSYS%20%2832-bit%29/
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages/

BAWT - Build Automation With Tcl

10 Release history

The following table gives an overview of the release history of BAWT. For detailed release information
see the BAWT homepage.

Version Date Release notes

0.1.0 2016-06-24 | First version introduced at EuroTcl 2016 in Eindhoven.

0.2.0 2016-08-27 | Improved build actions. New and updated libraries.

0.3.0 2016-10-23 | Improved build actions. New and updated libraries.

0.4.0 2016-12-28 | Improved build actions. New and updated libraries.

0.5.0 2017-03-19 | Improved build actions. New and updated libraries.

0.6.0 2017-07-20 | Improved build actions. New and updated libraries.

0.7.0 2017-08-26 | Improved build actions. New and updated libraries.

0.7.1 2017-09-12 | Support for Tcl/Tk 8.7.

0.7.2 2017-09-24 | Support for Visual Studio 2017.

0.7.3 2018-01-04 | Tcl/Tk 8.6.8. New and updated libraries.

0.8.0 2018-07-04 | Support for nested Setup files. New and updated libraries.

0.9.0 2018-12-28 | Tcl/Tk 8.6.9. New and updated libraries.

0.9.1 2019-03-09 | Better support for Debug build mode. New and updated libraries.

1.0.0 2019-06-23 | Several incompatible changes. Support for Visual Studio 2019.

1.1.0 2019-12-28 | Tcl/Tk 8.6.10. Improved MinGW support for several libraries. New
and updated libraries.

111 2020-01-12 | Improved handling of C++ based Tcl extensions.

1.1.2 2020-02-16 | Improved BawtLogViewer. New and updated libraries.

1.1.3 2020-03-15 | Improved Linux build. Updated libraries.

1.14 2020-05-02 | Improved MinGW support for several libraries. New and updated
libraries.

1.2.0 2020-06-09 | Additional MSYS2 support. New and updated libraries.

121 2020-09-05 | Support for Tcl/Tk 8.7a4. New and updated libraries.

1.3.0 2021-01-08 | Support for Tcl/Tk 8.6.11. Improved support for Tcl/Tk 8.7.a4. New
and updated libraries.

2.0.0 2021-08-22 | Support for primary and secondary compiler on Windows. Tcl/Tk
8.7.a5. New and updated libraries.

2.1.0 2021-12-28 | Support for Tcl/Tk 8.6.12. New and updated libraries.

2.2.0 2022-04-15 | Support for MinGW gcc 11. New and updated libraries.

2.2.1 2022-07-17 | Maintenance release. New and updated libraries.

2.3.0 2022-12-18 | Support for Tcl/Tk 8.6.13 and Apple Silicon (ARM). New and
updated libraries.

2.3.1 2023-01-19 | Maintenance release. New and updated libraries.

BAWT User Manual

Version 2.3.1, 2023-01-19 Page 74 of 74

Copyright © 2016-2023 by Paul Obermeier. All rights reserved.

http://www.bawt.tcl3d.org/history.html

	1 Introduction
	2 Installation and Usage Examples
	2.1 Installation on Windows
	2.2 Installation on Linux
	2.3 Installation on Darwin
	2.4 Use of Batch Scripts

	3 Directory and File Structure
	3.1 Directory Structure
	3.1.1 Structure of the input directories
	3.1.2 Structure of the output directories
	3.1.3 Directory access

	3.2 Setup Files
	3.3 Build Files
	3.3.1 User supplied build files
	3.3.2 User configurable build files

	4 Build Stages
	4.1 Stage Bootstrap
	4.2 Stage Setup
	4.3 Stage Clean
	4.4 Stage Extract
	4.5 Stage Configure
	4.6 Stage Compile
	4.7 Stage Distribute
	4.8 Stage Finalize

	5 Build Process
	5.1 User Perspective
	5.1.1 Use Case: Cosmetic change of Build file CMake.bawt
	5.1.2 Compiler selection on Windows
	5.1.3 Online updates of libraries
	5.1.4 Use the generated libraries
	Use the Finalize procedure
	Create a software distribution setup file

	5.1.5 Change icons of executables
	5.1.6 Parallel builds

	5.2 Developer Perspective
	5.2.1 Upgrade a library
	5.2.2 Add a library
	5.2.3 Add a Tcl program
	5.2.4 Manually compile a library

	5.3 Known issues
	5.3.1 Build deadlock
	5.3.2 BawtLogViewer shows incorrect build time
	5.3.3 Package SWIG
	5.3.4 Package Trf
	5.3.5 Package tcllib/crc32

	5.4 Tips and Tricks
	5.4.1 Tips for Windows
	5.4.2 Tips for Linux

	5.5 Advanced Batch Scripts
	5.5.1 Build Tcl-Pure distributions
	5.5.2 Build Tcl-BI distributions

	6 Logging
	6.1 Graphical Log Viewer

	7 Command Line Options
	7.1 General Options
	7.2 List Action Options
	7.3 Build Action Options
	7.4 Build Configuration Options

	8 Supported Libraries
	9 MSYS / MinGW Information
	9.1 Introduction
	9.1.1 MSYS
	9.1.2 MSYS2
	9.1.3 MinGW

	9.2 Installation
	9.2.1 Download MSYS
	9.2.2 Download MinGW
	9.2.3 Extract
	9.2.4 Configuration
	9.2.5 Test

	9.3 Further Informations
	9.3.1 What is MSYS
	9.3.2 Where to get MSYS
	9.3.3 How to use MSYS

	10 Release history

